These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 1551570)

  • 21. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae.
    Rudin N; Sugarman E; Haber JE
    Genetics; 1989 Jul; 122(3):519-34. PubMed ID: 2668114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A nuclear mutation defective in mitochondrial recombination in yeast.
    Ling F; Makishima F; Morishima N; Shibata T
    EMBO J; 1995 Aug; 14(16):4090-101. PubMed ID: 7664749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron.
    Monteilhet C; Perrin A; Thierry A; Colleaux L; Dujon B
    Nucleic Acids Res; 1990 Mar; 18(6):1407-13. PubMed ID: 2183191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-site-specific endonucleases and the initiation of homologous genetic recombination in yeast.
    Shibata T; Nakagawa K; Morishima N
    Adv Biophys; 1995; 31():77-91. PubMed ID: 7625280
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1.
    Fishman-Lobell J; Haber JE
    Science; 1992 Oct; 258(5081):480-4. PubMed ID: 1411547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast and antibiotic free genome integration into Escherichia coli chromosome.
    Egger E; Tauer C; Cserjan-Puschmann M; Grabherr R; Striedner G
    Sci Rep; 2020 Oct; 10(1):16510. PubMed ID: 33020519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity.
    Sweetser DB; Hough H; Whelden JF; Arbuckle M; Nickoloff JA
    Mol Cell Biol; 1994 Jun; 14(6):3863-75. PubMed ID: 8196629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting a truncated Ho-endonuclease of yeast to novel DNA sites with foreign zinc fingers.
    Nahon E; Raveh D
    Nucleic Acids Res; 1998 Mar; 26(5):1233-9. PubMed ID: 9469831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae.
    Ivanov EL; Sugawara N; Fishman-Lobell J; Haber JE
    Genetics; 1996 Mar; 142(3):693-704. PubMed ID: 8849880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes.
    Prado F; Aguilera A
    Genetics; 1995 Jan; 139(1):109-23. PubMed ID: 7705617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality.
    Nelson HH; Sweetser DB; Nickoloff JA
    Mol Cell Biol; 1996 Jun; 16(6):2951-7. PubMed ID: 8649406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aberrant double-strand break repair in rad51 mutants of Saccharomyces cerevisiae.
    Kang LE; Symington LS
    Mol Cell Biol; 2000 Dec; 20(24):9162-72. PubMed ID: 11094068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae.
    Moore JK; Haber JE
    Mol Cell Biol; 1996 May; 16(5):2164-73. PubMed ID: 8628283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repair of DNA double strand breaks: in vivo biochemistry.
    Sugawara N; Haber JE
    Methods Enzymol; 2006; 408():416-29. PubMed ID: 16793384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular analysis of sister chromatid recombination in mammalian cells.
    Puget N; Knowlton M; Scully R
    DNA Repair (Amst); 2005 Feb; 4(2):149-61. PubMed ID: 15590323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks.
    Meddows TR; Savory AP; Grove JI; Moore T; Lloyd RG
    Mol Microbiol; 2005 Jul; 57(1):97-110. PubMed ID: 15948952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the nucleotide sequence recognized by a eukaryotic site-specific endonuclease, Endo.SceI from yeast.
    Shibata T; Watabe H; Kaneko T; Iino T; Ando T
    J Biol Chem; 1984 Aug; 259(16):10499-506. PubMed ID: 6088501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae.
    Solis-Escalante D; Kuijpers NG; van der Linden FH; Pronk JT; Daran JM; Daran-Lapujade P
    FEMS Yeast Res; 2014 Aug; 14(5):741-54. PubMed ID: 24833416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A highly sensitive selection method for directed evolution of homing endonucleases.
    Chen Z; Zhao H
    Nucleic Acids Res; 2005 Oct; 33(18):e154. PubMed ID: 16214805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted mutagenesis in the progeny of maize transgenic plants.
    Yang M; Djukanovic V; Stagg J; Lenderts B; Bidney D; Falco SC; Lyznik LA
    Plant Mol Biol; 2009 Aug; 70(6):669-79. PubMed ID: 19466565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.