These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 1551593)
1. Are there highly conserved DNA polymerase 3'----5' exonuclease motifs? Reha-Krantz LJ Gene; 1992 Mar; 112(1):133-7. PubMed ID: 1551593 [TBL] [Abstract][Full Text] [Related]
2. Evidence favouring the hypothesis of a conserved 3'-5' exonuclease active site in DNA-dependent DNA polymerases. Blanco L; Bernad A; Salas M Gene; 1992 Mar; 112(1):139-44. PubMed ID: 1551594 [TBL] [Abstract][Full Text] [Related]
3. DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies. Reha-Krantz LJ; Stocki S; Nonay RL; Dimayuga E; Goodrich LD; Konigsberg WH; Spicer EK Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2417-21. PubMed ID: 2006180 [TBL] [Abstract][Full Text] [Related]
4. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity. Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692 [TBL] [Abstract][Full Text] [Related]
5. A general structure for DNA-dependent DNA polymerases. Blanco L; Bernad A; Blasco MA; Salas M Gene; 1991 Apr; 100():27-38. PubMed ID: 2055476 [TBL] [Abstract][Full Text] [Related]
6. Amino acid sequence motifs essential to 3'-->5' exonuclease activity of Escherichia coli DNA polymerase II. Ishino Y; Iwasaki H; Kato I; Shinagawa H J Biol Chem; 1994 May; 269(20):14655-60. PubMed ID: 8182073 [TBL] [Abstract][Full Text] [Related]
7. Improvement of the 3'-5' exonuclease activity of Taq DNA polymerase by protein engineering in the active site. Park Y; Choi H; Lee DS; Kim Y Mol Cells; 1997 Jun; 7(3):419-24. PubMed ID: 9264032 [TBL] [Abstract][Full Text] [Related]
8. Structure of Escherichia coli exonuclease I suggests how processivity is achieved. Breyer WA; Matthews BW Nat Struct Biol; 2000 Dec; 7(12):1125-8. PubMed ID: 11101894 [TBL] [Abstract][Full Text] [Related]
9. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase. Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997 [TBL] [Abstract][Full Text] [Related]
10. Effects of mutations in the Exo III motif of the herpes simplex virus DNA polymerase gene on enzyme activities, viral replication, and replication fidelity. Hwang YT; Liu BY; Coen DM; Hwang CB J Virol; 1997 Oct; 71(10):7791-8. PubMed ID: 9311864 [TBL] [Abstract][Full Text] [Related]
11. Phage phi 29 DNA polymerase residues involved in the proper stabilisation of the primer-terminus at the 3'-5' exonuclease active site. de Vega M; Lázaro JM; Salas M J Mol Biol; 2000 Nov; 304(1):1-9. PubMed ID: 11071805 [TBL] [Abstract][Full Text] [Related]
12. Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'-->5' exonuclease activity. Frey MW; Nossal NG; Capson TL; Benkovic SJ Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2579-83. PubMed ID: 8464864 [TBL] [Abstract][Full Text] [Related]
13. Primary structure of T4 DNA polymerase. Evolutionary relatedness to eucaryotic and other procaryotic DNA polymerases. Spicer EK; Rush J; Fung C; Reha-Krantz LJ; Karam JD; Konigsberg WH J Biol Chem; 1988 Jun; 263(16):7478-86. PubMed ID: 3286635 [TBL] [Abstract][Full Text] [Related]
14. Family A and family B DNA polymerases are structurally related: evolutionary implications. Zhu W; Ito J Nucleic Acids Res; 1994 Dec; 22(24):5177-83. PubMed ID: 7816603 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. Rodriguez AC; Park HW; Mao C; Beese LS J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3'-5' exonuclease and strand-displacement activities. Soengas MS; Esteban JA; Lázaro JM; Bernad A; Blasco MA; Salas M; Blanco L EMBO J; 1992 Nov; 11(11):4227-37. PubMed ID: 1396603 [TBL] [Abstract][Full Text] [Related]
17. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Cowart M; Gibson KJ; Allen DJ; Benkovic SJ Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768 [TBL] [Abstract][Full Text] [Related]
18. T5 DNA polymerase: structural--functional relationships to other DNA polymerases. Leavitt MC; Ito J Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4465-9. PubMed ID: 2660138 [TBL] [Abstract][Full Text] [Related]
19. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. de Vega M; Lazaro JM; Salas M; Blanco L EMBO J; 1996 Mar; 15(5):1182-92. PubMed ID: 8605889 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3' --> 5' exonuclease activities. Stocki SA; Nonay RL; Reha-Krantz LJ J Mol Biol; 1995 Nov; 254(1):15-28. PubMed ID: 7473755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]