BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15516137)

  • 1. Stable microstructured network for protein patterning on a plastic microfluidic channel: strategy and characterization of on-chip enzyme microreactors.
    Qu H; Wang H; Huang Y; Zhong W; Lu H; Kong J; Yang P; Liu B
    Anal Chem; 2004 Nov; 76(21):6426-33. PubMed ID: 15516137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zeolite nanoparticle modified microchip reactor for efficient protein digestion.
    Huang Y; Shan W; Liu B; Liu Y; Zhang Y; Zhao Y; Lu H; Tang Y; Yang P
    Lab Chip; 2006 Apr; 6(4):534-9. PubMed ID: 16572216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategy for allosteric analysis based on protein-patterned stationary phase in microfluidic chip.
    Bi H; Weng X; Qu H; Kong J; Yang P; Liu B
    J Proteome Res; 2005; 4(6):2154-60. PubMed ID: 16335962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis.
    Liu J; Lin S; Qi D; Deng C; Yang P; Zhang X
    J Chromatogr A; 2007 Dec; 1176(1-2):169-77. PubMed ID: 18021785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an efficient on-chip digestion system for protein analysis using MALDI-TOF MS.
    Lee J; Soper SA; Murray KK
    Analyst; 2009 Dec; 134(12):2426-33. PubMed ID: 19918612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a biomimetic surface on microfluidic chips for biofouling resistance.
    Bi H; Zhong W; Meng S; Kong J; Yang P; Liu B
    Anal Chem; 2006 May; 78(10):3399-405. PubMed ID: 16689543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres.
    Li Y; Yan B; Deng C; Yu W; Xu X; Yang P; Zhang X
    Proteomics; 2007 Jul; 7(14):2330-9. PubMed ID: 17570518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis.
    Bao H; Zhang L; Chen G
    J Chromatogr A; 2013 Oct; 1310():74-81. PubMed ID: 23998335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber-packed channel bioreactor for microfluidic protein digestion.
    Fan H; Chen G
    Proteomics; 2007 Oct; 7(19):3445-9. PubMed ID: 17722209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific protein immobilization in a microfluidic chip channel via an IEF-gelation process.
    Shi M; Peng Y; Yu S; Liu B; Kong J
    Electrophoresis; 2007 May; 28(10):1587-94. PubMed ID: 17447236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis.
    Liu T; Wang S; Chen G
    Talanta; 2009 Mar; 77(5):1767-73. PubMed ID: 19159796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption.
    Bi H; Meng S; Li Y; Guo K; Chen Y; Kong J; Yang P; Zhong W; Liu B
    Lab Chip; 2006 Jun; 6(6):769-75. PubMed ID: 16738729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microchip-based proteolytic digestion system driven by electroosmotic pumping.
    Jin LJ; Ferrance J; Sanders JC; Landers JP
    Lab Chip; 2003 Feb; 3(1):11-8. PubMed ID: 15100799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies.
    Krenkova J; Lacher NA; Svec F
    Anal Chem; 2009 Mar; 81(5):2004-12. PubMed ID: 19186936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel monolithic enzymatic microreactor based on single-enzyme nanoparticles for highly efficient proteolysis and its application in multidimensional liquid chromatography.
    Gao M; Zhang P; Hong G; Guan X; Yan G; Deng C; Zhang X
    J Chromatogr A; 2009 Oct; 1216(44):7472-7. PubMed ID: 19481218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypsin-linked copolymer MALDI chips for fast protein identification.
    IbaƱez AJ; Muck A; Halim V; Svatos A
    J Proteome Res; 2007 Mar; 6(3):1183-9. PubMed ID: 17243663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligase detection reaction/hybridization assays using three-dimensional microfluidic networks for the detection of low-abundant DNA point mutations.
    Hashimoto M; Hupert ML; Murphy MC; Soper SA; Cheng YW; Barany F
    Anal Chem; 2005 May; 77(10):3243-55. PubMed ID: 15889915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns.
    Ro KW; Liu J; Knapp DR
    J Chromatogr A; 2006 Apr; 1111(1):40-7. PubMed ID: 16480733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.