These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 15516341)
21. Mining Fatty Acid Biosynthesis for New Antimicrobials. Radka CD; Rock CO Annu Rev Microbiol; 2022 Sep; 76():281-304. PubMed ID: 35650664 [TBL] [Abstract][Full Text] [Related]
22. Bacterial fatty acid metabolism in modern antibiotic discovery. Yao J; Rock CO Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Nov; 1862(11):1300-1309. PubMed ID: 27668701 [TBL] [Abstract][Full Text] [Related]
23. Synthesis and evaluation of new quinazolin-4(3H)-one derivatives as potent antibacterial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Gatadi S; Gour J; Shukla M; Kaul G; Dasgupta A; Madhavi YV; Chopra S; Nanduri S Eur J Med Chem; 2019 Aug; 175():287-308. PubMed ID: 31096152 [TBL] [Abstract][Full Text] [Related]
26. N-Acylated Derivatives of Sulfamethoxazole Block Chlamydia Fatty Acid Synthesis and Interact with FabF. Mojica SA; Salin O; Bastidas RJ; Sunduru N; Hedenström M; Andersson CD; Núñez-Otero C; Engström P; Valdivia RH; Elofsson M; Gylfe Å Antimicrob Agents Chemother; 2017 Oct; 61(10):. PubMed ID: 28784680 [TBL] [Abstract][Full Text] [Related]
27. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity. Kassab AE; Gedawy EM Eur J Med Chem; 2018 Apr; 150():403-418. PubMed ID: 29547830 [TBL] [Abstract][Full Text] [Related]
28. Antibacterial activity of extracted bioactive molecules of Schinus terebinthifolius ripened fruits against some pathogenic bacteria. Salem MZM; El-Hefny M; Ali HM; Elansary HO; Nasser RA; El-Settawy AAA; El Shanhorey N; Ashmawy NA; Salem AZM Microb Pathog; 2018 Jul; 120():119-127. PubMed ID: 29704984 [TBL] [Abstract][Full Text] [Related]
29. 1,2-dithiole-3-ones as potent inhibitors of the bacterial 3-ketoacyl acyl carrier protein synthase III (FabH). He X; Reeve AM; Desai UR; Kellogg GE; Reynolds KA Antimicrob Agents Chemother; 2004 Aug; 48(8):3093-102. PubMed ID: 15273125 [TBL] [Abstract][Full Text] [Related]
30. In vitro antibacterial effects of statins against bacterial pathogens causing skin infections. Ko HHT; Lareu RR; Dix BR; Hughes JD Eur J Clin Microbiol Infect Dis; 2018 Jun; 37(6):1125-1135. PubMed ID: 29569046 [TBL] [Abstract][Full Text] [Related]
31. Design, Synthesis, and Evaluation of Novel Tyrosine-Based DNA Gyrase B Inhibitors. Cotman AE; Trampuž M; Brvar M; Kikelj D; Ilaš J; Peterlin-Mašič L; Montalvão S; Tammela P; Frlan R Arch Pharm (Weinheim); 2017 Aug; 350(8):. PubMed ID: 28621824 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and Biological Evaluation of Structurally Diverse Benzimidazole Scaffolds as Potential Chemotherapeutic Agents. Barasa L; Vemana HP; Surubhotla N; Ha SS; Kong J; Yong A; Croft JL; Dukhande VV; Yoganathan S Anticancer Agents Med Chem; 2020; 20(3):301-314. PubMed ID: 31746304 [TBL] [Abstract][Full Text] [Related]
33. Design, synthesis and antibacterial activities of 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiol derivatives containing Schiff base formation as FabH inhibitory. Zhang F; Wen Q; Wang SF; Shahla Karim B; Yang YS; Liu JJ; Zhang WM; Zhu HL Bioorg Med Chem Lett; 2014 Jan; 24(1):90-5. PubMed ID: 24332628 [TBL] [Abstract][Full Text] [Related]
34. Antibiotic-Potentiating Activity of Phanostenine Isolated from Cissampelos sympodialis Eichler. Cunha WEM; Camilo CJ; de F A Nonato C; Mendes JWS; de Carvalho NKG; Coutinho HDM; Menezes IRA; de Lemos TLG; Braz-Filho R; Rodrigues FFG; Matias EFF; Zengin G; Costa JGM Chem Biodivers; 2019 Dec; 16(12):e1900313. PubMed ID: 31545879 [TBL] [Abstract][Full Text] [Related]
35. Synthesis, evaluation, and CoMFA study of fluoroquinophenoxazine derivatives as bacterial topoisomerase IA inhibitors. Yu X; Zhang M; Annamalai T; Bansod P; Narula G; Tse-Dinh YC; Sun D Eur J Med Chem; 2017 Jan; 125():515-527. PubMed ID: 27689733 [TBL] [Abstract][Full Text] [Related]
36. GroEL/ES inhibitors as potential antibiotics. Abdeen S; Salim N; Mammadova N; Summers CM; Frankson R; Ambrose AJ; Anderson GG; Schultz PG; Horwich AL; Chapman E; Johnson SM Bioorg Med Chem Lett; 2016 Jul; 26(13):3127-3134. PubMed ID: 27184767 [TBL] [Abstract][Full Text] [Related]
37. Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. Wang LH; Zeng XA; Wang MS; Brennan CS; Gong D Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):481-490. PubMed ID: 29138066 [TBL] [Abstract][Full Text] [Related]
38. Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds. Pendota SC; Aderogba MA; Ndhlala AR; Van Staden J J Ethnopharmacol; 2013 Jul; 148(2):515-20. PubMed ID: 23665162 [TBL] [Abstract][Full Text] [Related]
39. Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid. Wu D; Wu XD; You XF; Ma XF; Tian WX Phytother Res; 2010 Jan; 24 Suppl 1():S35-41. PubMed ID: 19444866 [TBL] [Abstract][Full Text] [Related]