These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15516865)

  • 1. Magnetic and hydrogel composite materials for hyperthermia applications.
    Lao LL; Ramanujan RV
    J Mater Sci Mater Med; 2004 Oct; 15(10):1061-4. PubMed ID: 15516865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Local hyperthermia using a device made of temperature-sensitive ferrite. The first report: temperature, output characteristics].
    Sato T; Matsuki H; Hoshino T; Hoshi K; Muraoka H; Yaginuma K; Kazusa C; Kimura K
    Nihon Igaku Hoshasen Gakkai Zasshi; 1989 Mar; 49(3):314-26. PubMed ID: 2755797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles.
    Lacroix LM; Carrey J; Respaud M
    Rev Sci Instrum; 2008 Sep; 79(9):093909. PubMed ID: 19044430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia.
    Jordan A; Wust P; Fähling H; John W; Hinz A; Felix R
    Int J Hyperthermia; 1993; 9(1):51-68. PubMed ID: 8433026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy.
    Meenach SA; Hilt JZ; Anderson KW
    Acta Biomater; 2010 Mar; 6(3):1039-46. PubMed ID: 19840875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia.
    Khot VM; Salunkhe AB; Thorat ND; Ningthoujam RS; Pawar SH
    Dalton Trans; 2013 Jan; 42(4):1249-58. PubMed ID: 23138108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery.
    Meenach SA; Shapiro JM; Hilt JZ; Anderson KW
    J Biomater Sci Polym Ed; 2013; 24(9):1112-26. PubMed ID: 23683041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells.
    Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J
    Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified MgFe2O4 Ferrimagnetic Nanoparticles to Improve Magnetic and AC Magnetically-Induced Heating Characteristics for Hyperthermia.
    Lee S; Jeun M
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9597-602. PubMed ID: 26682384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrimagnetic nanoparticles enhance microwave heating for tumor hyperthermia therapy.
    Pearce JA; Cook JR; Emelianov SY
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2751-4. PubMed ID: 21096213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.
    Coïsson M; Barrera G; Celegato F; Martino L; Kane SN; Raghuvanshi S; Vinai F; Tiberto P
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1545-1558. PubMed ID: 27986628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field].
    Liu X; Xu B; Xia QS; Zhao TD; Tang JT
    Ai Zheng; 2005 Sep; 24(9):1148-50. PubMed ID: 16159444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermia classic commentary: 'Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia' by Andreas Jordan et al., International Journal of Hyperthermia, 1993;9:51-68.
    Jordan A
    Int J Hyperthermia; 2009 Nov; 25(7):512-6. PubMed ID: 19848613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia.
    Salloum M; Ma R; Zhu L
    Int J Hyperthermia; 2008 Nov; 24(7):589-601. PubMed ID: 18979310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterization and in vitro analysis of α-Fe
    Deka S; Saxena V; Hasan A; Chandra P; Pandey LM
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():932-941. PubMed ID: 30184823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug.
    Liu TY; Hu SH; Liu TY; Liu DM; Chen SY
    Langmuir; 2006 Jul; 22(14):5974-8. PubMed ID: 16800645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.