These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15516877)

  • 1. Effect of particle morphology and polyethylene molecular weight on the fracture toughness of hydroxyapatite reinforced polyethylene composite.
    Eniwumide JO; Joseph R; Tanner KE
    J Mater Sci Mater Med; 2004 Oct; 15(10):1147-52. PubMed ID: 15516877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of filler surface morphology on the impact behaviour of hydroxyapatite reinforced high density polyethylene composites.
    Zhang Y; Tanner KE
    J Mater Sci Mater Med; 2008 Feb; 19(2):761-6. PubMed ID: 17619972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of morphological features and surface area of hydroxyapatite on the fatigue behavior of hydroxyapatite-polyethylene composites.
    Joseph R; Tanner KE
    Biomacromolecules; 2005; 6(2):1021-6. PubMed ID: 15762673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites.
    Joseph R; McGregor WJ; Martyn MT; Tanner KE; Coates PD
    Biomaterials; 2002 Nov; 23(21):4295-302. PubMed ID: 12194532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing and mechanical properties of HA/UHMWPE nanocomposites.
    Fang L; Leng Y; Gao P
    Biomaterials; 2006 Jul; 27(20):3701-7. PubMed ID: 16564570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene.
    Gong XH; Tang CY; Hu HC; Zhou XP; Xie XL
    J Mater Sci Mater Med; 2004 Oct; 15(10):1141-6. PubMed ID: 15516876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of partially stabilized zirconia on the mechanical properties of the hydroxyapatite-polyethylene composites.
    Sadi AY; Homaeigohar SSh; Khavandi AR; Javadpour J
    J Mater Sci Mater Med; 2004 Aug; 15(8):853-8. PubMed ID: 15477736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of adding diamond particles on the fracture toughness of apatite ceramics.
    Kon M; Kuwayama N
    Dent Mater J; 1993 Jun; 12(1):12-7. PubMed ID: 8306601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of self-reinforced ultra-high-molecular-weight polyethylene composites.
    Deng M; Shalaby SW
    Biomaterials; 1997 May; 18(9):645-55. PubMed ID: 9151996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology.
    Wang M; Joseph R; Bonfield W
    Biomaterials; 1998 Dec; 19(24):2357-66. PubMed ID: 9884050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite.
    Liu F; Sun B; Jiang X; Aldeyab SS; Zhang Q; Zhu M
    Dent Mater; 2014 Dec; 30(12):1358-68. PubMed ID: 25458352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass-reinforced hydroxyapatite composites: fracture toughness and hardness dependence on microstructural characteristics.
    Lopes MA; Monteiro FJ; Santos JD
    Biomaterials; 1999 Nov; 20(21):2085-90. PubMed ID: 10535820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.
    Liu H; Wu Q; Zhang Q
    Bioresour Technol; 2009 Dec; 100(23):6088-97. PubMed ID: 19574041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture toughness of hydroxyapatite/mica composite, packed hydroxyapatite, alumina ceramics, silicon nitride and -carbide.
    Nordström EG; Yokobori AT; Yokobori T; Aizawa Y
    Biomed Mater Eng; 1998; 8(1):37-43. PubMed ID: 9713684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development.
    Hao L; Savalani MM; Zhang Y; Tanner KE; Harris RA
    Proc Inst Mech Eng H; 2006 May; 220(4):521-31. PubMed ID: 16808068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro.
    Khalid P; Hussain MA; Rekha PD; Arun AB
    Hum Exp Toxicol; 2015 May; 34(5):548-56. PubMed ID: 25233896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-porous thermally sintered nano silica as novel fillers for dental composites.
    Atai M; Pahlavan A; Moin N
    Dent Mater; 2012 Feb; 28(2):133-45. PubMed ID: 22137937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of needle-like nano-HA and HA/MWNT composites.
    Meng YH; Tang CY; Tsui CP; Chen DZ
    J Mater Sci Mater Med; 2008 Jan; 19(1):75-81. PubMed ID: 17577639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. I. Uniaxial fatigue.
    That PT; Tanner KE; Bonfield W
    J Biomed Mater Res; 2000 Sep; 51(3):453-60. PubMed ID: 10880088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically coupled hydroxyapatite-polyethylene composites: structure and properties.
    Wang M; Bonfield W
    Biomaterials; 2001 Jun; 22(11):1311-20. PubMed ID: 11336303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.