These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 15516878)
1. The controlled resorption of porous alpha-tricalcium phosphate using a hydroxypropylcellulose coating. Kitamura M; Ohtsuki C; Iwasaki H; Ogata S; Tanihara M; Miyazaki T J Mater Sci Mater Med; 2004 Oct; 15(10):1153-8. PubMed ID: 15516878 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate. Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565 [TBL] [Abstract][Full Text] [Related]
4. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Lin FH; Liao CJ; Chen KS; Su JS; Lin CP Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472 [TBL] [Abstract][Full Text] [Related]
5. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615 [TBL] [Abstract][Full Text] [Related]
6. Bone-bonding behavior of plasma-sprayed coatings of BioglassR, AW-glass ceramic, and tricalcium phosphate on titanium alloy. Kitsugi T; Nakamura T; Oka M; Senaha Y; Goto T; Shibuya T J Biomed Mater Res; 1996 Feb; 30(2):261-9. PubMed ID: 9019492 [TBL] [Abstract][Full Text] [Related]
7. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics. Kamitakahara M; Tatsukawa E; Shibata Y; Umemoto S; Yokoi T; Ioku K; Ikeda T J Mater Sci Mater Med; 2016 May; 27(5):97. PubMed ID: 27003839 [TBL] [Abstract][Full Text] [Related]
8. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility. Ryu HS; Hong KS; Lee JK; Kim DJ; Lee JH; Chang BS; Lee DH; Lee CK; Chung SS Biomaterials; 2004 Feb; 25(3):393-401. PubMed ID: 14585687 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
10. Effects of sintering temperature on physical and compositional properties of alpha-tricalcium phosphate foam. Udoh K; Munar ML; Maruta M; Matsuya S; Ishikawa K Dent Mater J; 2010 Mar; 29(2):154-9. PubMed ID: 20379025 [TBL] [Abstract][Full Text] [Related]
11. Effect of water glass coating of tricalcium phosphate granules on in vivo bone formation. Ryu SM; Ahn MW; Park CH; Lee GW; Song IH; Ahn HS; Kim J; Kim S J Biomater Appl; 2018 Nov; 33(5):662-672. PubMed ID: 30396326 [TBL] [Abstract][Full Text] [Related]
12. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
13. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres. Ishikawa K; Arifta TI; Hayashi K; Tsuru K J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):269-277. PubMed ID: 29577584 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794 [TBL] [Abstract][Full Text] [Related]
16. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
17. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics. Xie L; Yu H; Deng Y; Yang W; Liao L; Long Q Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1007-1015. PubMed ID: 26652459 [TBL] [Abstract][Full Text] [Related]
18. Early weight bearing of porous HA/TCP (60/40) ceramics in vivo: a longitudinal study in a segmental bone defect model of rabbit. Balçik C; Tokdemir T; Senköylü A; Koç N; Timuçin M; Akin S; Korkusuz P; Korkusuz F Acta Biomater; 2007 Nov; 3(6):985-96. PubMed ID: 17574942 [TBL] [Abstract][Full Text] [Related]
19. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
20. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. Nilen RW; Richter PW J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]