BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 15517405)

  • 21. Constant hydraulic supply and ABA dynamics facilitate the trade-offs in water and carbon.
    Abdalla M; Schweiger AH; Berauer BJ; McAdam SAM; Ahmed MA
    Front Plant Sci; 2023; 14():1140938. PubMed ID: 37008480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative measurements of transpiration and canopy conductance in two mixed deciduous woodlands differing in structure and species composition.
    Herbst M; Rosier PT; Morecroft MD; Gowing DJ
    Tree Physiol; 2008 Jun; 28(6):959-70. PubMed ID: 18381276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of light acclimation during and after foliage expansion on photosynthesis ofAbies amabilis foliage within the canopy.
    Brooks JR; Sprugel DG; Hinckley TM
    Oecologia; 1996 Mar; 107(1):21-32. PubMed ID: 28307188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir.
    Woodruff DR; McCulloh KA; Warren JM; Meinzer FC; Lachenbruch B
    Plant Cell Environ; 2007 May; 30(5):559-69. PubMed ID: 17407534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydraulic properties of naturally regenerated beech saplings respond to canopy opening.
    Caquet B; Barigah TS; Cochard H; Montpied P; Collet C; Dreyer E; Epron D
    Tree Physiol; 2009 Nov; 29(11):1395-405. PubMed ID: 19744973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
    Uddling J; Teclaw RM; Pregitzer KS; Ellsworth DS
    Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.
    Hubbard RM; Bond BJ; Senock RS; Ryan MG
    Tree Physiol; 2002 Jun; 22(8):575-81. PubMed ID: 12045029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses of gas exchange to reversible changes in whole-plant transpiration rate in two conifer species.
    Warren CR; Livingston NJ; Turpin DH
    Tree Physiol; 2003 Aug; 23(12):793-803. PubMed ID: 12865245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area.
    Zhang Y; Oren R; Kang S
    Tree Physiol; 2012 Mar; 32(3):262-79. PubMed ID: 22157418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply.
    Binks O; Cernusak LA; Liddell M; Bradford M; Coughlin I; Bryant C; Palma AC; Hoffmann L; Alam I; Carle HJ; Rowland L; Oliveira RS; Laurance SGW; Mencuccini M; Meir P
    New Phytol; 2023 Nov; 240(4):1405-1420. PubMed ID: 37705460
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variation in crown light utilization characteristics among tropical canopy trees.
    Kitajima K; Mulkey SS; Wright SJ
    Ann Bot; 2005 Feb; 95(3):535-47. PubMed ID: 15585541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.
    Paudel I; Naor A; Gal Y; Cohen S
    Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Do stomata operate at the same relative opening range along a canopy profile of Betula pendula?
    Eensalu E; Kupper P; Sellin A; Rahi M; Sõber A; Kull O
    Funct Plant Biol; 2008 Apr; 35(2):103-110. PubMed ID: 32688761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genotypic variation in drought response of silver birch (Betula pendula): leaf water status and carbon gain.
    Aspelmeier S; Leuschner C
    Tree Physiol; 2004 May; 24(5):517-28. PubMed ID: 14996656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variations in transpiration rate and leaf cell turgor maintenance in saplings of deciduous broad-leaved tree species common in cool temperate forests in Japan.
    Saito T; Tanaka T; Tanabe H; Matsumoto Y; Morikawa Y
    Tree Physiol; 2003 Jan; 23(1):59-66. PubMed ID: 12511305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.
    Villagra M; Campanello PI; Montti L; Goldstein G
    Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species.
    Johnson DM; McCulloh KA; Meinzer FC; Woodruff DR; Eissenstat DM
    Tree Physiol; 2011 Jun; 31(6):659-68. PubMed ID: 21724585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of transpiration and photosynthesis to reversible changes in photosynthetic foliage area in western red cedar (Thuja plicata) seedlings.
    Pepin S; Livingston NJ; Whitehead D
    Tree Physiol; 2002 Apr; 22(6):363-71. PubMed ID: 11960761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.