These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Controlling two-dimensional tethered vesicle motion using an electric field: interplay of electrophoresis and electro-osmosis. Yoshina-Ishii C; Boxer SG Langmuir; 2006 Feb; 22(5):2384-91. PubMed ID: 16489833 [TBL] [Abstract][Full Text] [Related]
25. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH. Johnsson M; Wagenaar A; Engberts JB J Am Chem Soc; 2003 Jan; 125(3):757-60. PubMed ID: 12526675 [TBL] [Abstract][Full Text] [Related]
26. Rheology of giant vesicles: a micropipette study. Fa N; Marques CM; Mendes E; Schröder AP Phys Rev Lett; 2004 Mar; 92(10):108103. PubMed ID: 15089249 [TBL] [Abstract][Full Text] [Related]
27. Probing the interplay between amyloidogenic proteins and membranes using lipid monolayers and bilayers. Relini A; Marano N; Gliozzi A Adv Colloid Interface Sci; 2014 May; 207():81-92. PubMed ID: 24200086 [TBL] [Abstract][Full Text] [Related]
28. Tension-induced fusion of bilayer membranes and vesicles. Shillcock JC; Lipowsky R Nat Mater; 2005 Mar; 4(3):225-8. PubMed ID: 15711550 [TBL] [Abstract][Full Text] [Related]
29. Can linear micelles bridge between two surfaces? Jódar-Reyes AB; Leermakers FA J Phys Chem B; 2006 Sep; 110(37):18415-23. PubMed ID: 16970466 [TBL] [Abstract][Full Text] [Related]
30. Membrane tubulation from giant lipid vesicles in alternating electric fields. Antonova K; Vitkova V; Meyer C Phys Rev E; 2016 Jan; 93(1):012413. PubMed ID: 26871107 [TBL] [Abstract][Full Text] [Related]
31. Solubilization mechanism of vesicles by surfactants: effect of hydrophobicity. Lin CM; Chang GP; Tsao HK; Sheng YJ J Chem Phys; 2011 Jul; 135(4):045102. PubMed ID: 21806160 [TBL] [Abstract][Full Text] [Related]
32. The vesicle-to-micelle transformation of phospholipid-cholate mixed aggregates: a state of the art analysis including membrane curvature effects. Elsayed MM; Cevc G Biochim Biophys Acta; 2011 Jan; 1808(1):140-53. PubMed ID: 20832388 [TBL] [Abstract][Full Text] [Related]
33. Adhesion of vesicles to curved substrates. Das S; Du Q Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011907. PubMed ID: 18351876 [TBL] [Abstract][Full Text] [Related]
34. Dynamics of transient pores in stretched vesicles. Sandre O; Moreaux L; Brochard-Wyart F Proc Natl Acad Sci U S A; 1999 Sep; 96(19):10591-6. PubMed ID: 10485870 [TBL] [Abstract][Full Text] [Related]
35. Coexisting stripe- and patch-shaped domains in giant unilamellar vesicles. Li L; Cheng JX Biochemistry; 2006 Oct; 45(39):11819-26. PubMed ID: 17002282 [TBL] [Abstract][Full Text] [Related]
36. Replicating vesicles as models of primitive cell growth and division. Hanczyc MM; Szostak JW Curr Opin Chem Biol; 2004 Dec; 8(6):660-4. PubMed ID: 15556412 [TBL] [Abstract][Full Text] [Related]
37. Preparation of solvent-free, pore-spanning lipid bilayers: modeling the low tension of plasma membranes. Kocun M; Lazzara TD; Steinem C; Janshoff A Langmuir; 2011 Jun; 27(12):7672-80. PubMed ID: 21619014 [TBL] [Abstract][Full Text] [Related]
38. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Honerkamp-Smith AR; Veatch SL; Keller SL Biochim Biophys Acta; 2009 Jan; 1788(1):53-63. PubMed ID: 18930706 [TBL] [Abstract][Full Text] [Related]
39. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]