These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15518191)

  • 21. Polymorphism of visual pigment genes in the muriqui (Primates, Atelidae).
    Talebi MG; Pope TR; Vogel ER; Neitz M; Dominy NJ
    Mol Ecol; 2006 Feb; 15(2):551-8. PubMed ID: 16448420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Demonstration of a genotype-phenotype correlation in the polymorphic color vision of a non-callitrichine New World monkey, capuchin (Cebus apella).
    Saito A; Kawamura S; Mikami A; Ueno Y; Hiramatsu C; Koida K; Fujita K; Kuroshima H; Hasegawa T
    Am J Primatol; 2005 Dec; 67(4):471-85. PubMed ID: 16342070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Color vision test for dichromatic and trichromatic macaque monkeys.
    Koida K; Yokoi I; Okazawa G; Mikami A; Widayati KA; Miyachi S; Komatsu H
    J Vis; 2013 Nov; 13(13):1. PubMed ID: 24187056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): color vision.
    Jacobs GH
    Vision Res; 1984; 24(10):1267-77. PubMed ID: 6523747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The tuning of human photopigments may minimize red-green chromatic signals in natural conditions.
    Nagle MG; Osorio D
    Proc Biol Sci; 1993 Jun; 252(1335):209-13. PubMed ID: 8394581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis).
    Jacobs GH; Neitz J; Crognale M
    Vision Res; 1987; 27(12):2089-100. PubMed ID: 3128920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey.
    Regan BC; Julliot C; Simmen B; Viénot F; Charles-Dominique P; Mollon JD
    Vision Res; 1998 Nov; 38(21):3321-7. PubMed ID: 9893844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent evolution of uniform trichromacy in a New World monkey.
    Kainz PM; Neitz J; Neitz M
    Vision Res; 1998 Nov; 38(21):3315-20. PubMed ID: 9893843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of knock-in mice carrying third cones with spectral sensitivity different from S and L cones.
    Onishi A; Hasegawa J; Imai H; Chisaka O; Ueda Y; Honda Y; Tachibana M; Shichida Y
    Zoolog Sci; 2005 Oct; 22(10):1145-56. PubMed ID: 16286727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of fruit by the Cerrado's marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities.
    Perini ES; Pessoa VF; Pessoa DM
    J Exp Zool A Ecol Genet Physiol; 2009 Apr; 311(4):289-302. PubMed ID: 19296489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of L cone pigment gene subtypes in females.
    Neitz M; Kraft TW; Neitz J
    Vision Res; 1998 Nov; 38(21):3221-5. PubMed ID: 9893829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Color vision pigment frequencies in wild tamarins (Saguinus spp.).
    Surridge AK; Suárez SS; Buchanan-Smith HM; Smith AC; Mundy NI
    Am J Primatol; 2005 Dec; 67(4):463-70. PubMed ID: 16342074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype.
    Stockman A; Sharpe LT
    Vision Res; 2000; 40(13):1711-37. PubMed ID: 10814758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys.
    Matsumoto Y; Hiramatsu C; Matsushita Y; Ozawa N; Ashino R; Nakata M; Kasagi S; Di Fiore A; Schaffner CM; Aureli F; Melin AD; Kawamura S
    Mol Ecol; 2014 Apr; 23(7):1799-812. PubMed ID: 24612406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variety of genotypes in males diagnosed as dichromatic on a conventional clinical anomaloscope.
    Neitz M; Carroll J; Renner A; Knau H; Werner JS; Neitz J
    Vis Neurosci; 2004; 21(3):205-16. PubMed ID: 15518190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular genetics of spectral tuning in New World monkey color vision.
    Shyue SK; Boissinot S; Schneider H; Sampaio I; Schneider MP; Abee CR; Williams L; Hewett-Emmett D; Sperling HG; Cowing JA; Dulai KS; Hunt DM; Li WH
    J Mol Evol; 1998 Jun; 46(6):697-702. PubMed ID: 9608052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospects for trichromatic color vision in male Cebus monkeys.
    Jacobs GH
    Behav Brain Res; 1999 May; 101(1):109-12. PubMed ID: 10342405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling dichromatic and trichromatic sensitivity to the color properties of fruits eaten by squirrel monkeys (Saimiri sciureus).
    De Araújo MF; Lima EM; Pessoa VF
    Am J Primatol; 2006 Dec; 68(12):1129-37. PubMed ID: 17096422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opsin gene and photopigment polymorphism in a prosimian primate.
    Jacobs GH; Deegan JF; Tan Y; Li WH
    Vision Res; 2002 Jan; 42(1):11-8. PubMed ID: 11804627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.