These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 15518295)

  • 1. Energy system contribution to 100-m and 200-m track running events.
    Duffield R; Dawson B; Goodman C
    J Sci Med Sport; 2004 Sep; 7(3):302-13. PubMed ID: 15518295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy system contribution to 400-metre and 800-metre track running.
    Duffield R; Dawson B; Goodman C
    J Sports Sci; 2005 Mar; 23(3):299-307. PubMed ID: 15966348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy system contribution to 1500- and 3000-metre track running.
    Duffield R; Dawson B; Goodman C
    J Sports Sci; 2005 Oct; 23(10):993-1002. PubMed ID: 16194976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy system contribution during 200- to 1500-m running in highly trained athletes.
    Spencer MR; Gastin PB
    Med Sci Sports Exerc; 2001 Jan; 33(1):157-62. PubMed ID: 11194103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulated oxygen deficit and short-distance running performance.
    Ramsbottom R; Nevill AM; Nevill ME; Newport S; Williams C
    J Sports Sci; 1994 Oct; 12(5):447-53. PubMed ID: 7799473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic and aerobic energy system contribution to 400-m flat and 400-m hurdles track running.
    Zouhal H; Jabbour G; Jacob C; Duvigneau D; Botcazou M; Ben Abderrahaman A; Prioux J; Moussa E
    J Strength Cond Res; 2010 Sep; 24(9):2309-15. PubMed ID: 20703164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy system contributions in middle-distance running events.
    Hill DW
    J Sports Sci; 1999 Jun; 17(6):477-83. PubMed ID: 10404496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance.
    Nevill AM; Ramsbottom R; Nevill ME; Newport S; Williams C
    J Sports Med Phys Fitness; 2008 Jun; 48(2):138-42. PubMed ID: 18427406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of net anaerobic energy utilisation estimated by plasma lactate accumulation rate and accumulated oxygen deficit in Thoroughbred horses.
    Ohmura H; Mukai K; Takahashi T; Matsui A; Hiraga A; Jones JH
    Equine Vet J Suppl; 2010 Nov; (38):62-9. PubMed ID: 21058984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between postcompetition blood lactate concentration and average running velocity over 100-m and 200-m races.
    Hautier CA; Wouassi D; Arsac LM; Bitanga E; Thiriet P; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1994; 68(6):508-13. PubMed ID: 7957143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy system contribution in a maximal incremental test: correlations with pacing and overall performance in a 10-km running trial.
    Damasceno MV; Pasqua LA; Lima-Silva AE; Bertuzzi R
    Braz J Med Biol Res; 2015 Nov; 48(11):1048-54. PubMed ID: 26397970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating energy expenditure for brief bouts of exercise with acute recovery.
    Scott CB
    Appl Physiol Nutr Metab; 2006 Apr; 31(2):144-9. PubMed ID: 16604132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the oxygen uptake slow component on the aerobic energy cost of high-intensity submaximal treadmill running in humans.
    Bernard O; Maddio F; Ouattara S; Jimenez C; Charpenet A; Melin B; Bittel J
    Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):578-85. PubMed ID: 9840416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The acute effect of mouth only breathing on time to completion, heart rate, rate of perceived exertion, blood lactate, and ventilatory measures during a high-intensity shuttle run sequence.
    Meir R; Zhao GG; Zhou S; Beavers R; Davie A
    J Strength Cond Res; 2014 Apr; 28(4):950-7. PubMed ID: 24077371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of aerobic and anaerobic energy production in middle-distance running.
    Busso T; Chatagnon M
    Eur J Appl Physiol; 2006 Aug; 97(6):745-54. PubMed ID: 16838187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between 800-m running performance and accumulated oxygen deficit in middle-distance runners.
    Craig IS; Morgan DW
    Med Sci Sports Exerc; 1998 Nov; 30(11):1631-6. PubMed ID: 9813877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the ventilatory threshold coincident with maximal fat oxidation during submaximal exercise in women?
    Astorino TA
    J Sports Med Phys Fitness; 2000 Sep; 40(3):209-16. PubMed ID: 11125763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multidimensional analysis of metabolism contributions involved in running track tests.
    Heugas AM; Nummela A; Amorim MA; Billat V
    J Sci Med Sport; 2007 Oct; 10(5):280-7. PubMed ID: 17188932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
    Ferguson RA; Ball D; Krustrup P; Aagaard P; Kjaer M; Sargeant AJ; Hellsten Y; Bangsbo J
    J Physiol; 2001 Oct; 536(Pt 1):261-71. PubMed ID: 11579174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course of anaerobic and aerobic energy expenditure during short-term exhaustive running in athletes.
    Nummela A; Rusko H
    Int J Sports Med; 1995 Nov; 16(8):522-7. PubMed ID: 8776206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.