These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 15518471)
1. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Okushima S; Nisisako T; Torii T; Higuchi T Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008 [TBL] [Abstract][Full Text] [Related]
3. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Xu JH; Li SW; Tan J; Wang YJ; Luo GS Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223 [TBL] [Abstract][Full Text] [Related]
4. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Shui L; van den Berg A; Eijkel JC Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661 [TBL] [Abstract][Full Text] [Related]
5. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel. Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185 [TBL] [Abstract][Full Text] [Related]
6. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device. Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890 [TBL] [Abstract][Full Text] [Related]
8. Designed pneumatic valve actuators for controlled droplet breakup and generation. Choi JH; Lee SK; Lim JM; Yang SM; Yi GR Lab Chip; 2010 Feb; 10(4):456-61. PubMed ID: 20126685 [TBL] [Abstract][Full Text] [Related]
9. Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S Lab Chip; 2010 Sep; 10(17):2292-5. PubMed ID: 20625583 [TBL] [Abstract][Full Text] [Related]
10. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water. Schuch A; Deiters P; Henne J; Köhler K; Schuchmann HP J Colloid Interface Sci; 2013 Jul; 402():157-64. PubMed ID: 23643254 [TBL] [Abstract][Full Text] [Related]
11. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Bauer WA; Fischlechner M; Abell C; Huck WT Lab Chip; 2010 Jul; 10(14):1814-9. PubMed ID: 20442967 [TBL] [Abstract][Full Text] [Related]
12. Controlled generation of monodisperse discoid droplets using microchannel arrays. Kobayashi I; Uemura K; Nakajima M Langmuir; 2006 Dec; 22(26):10893-7. PubMed ID: 17154559 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of water-in-oil-in-water emulsions containing a high concentration of L-ascorbic acid. Khalid N; Kobayashi I; Neves MA; Uemura K; Nakajima M Biosci Biotechnol Biochem; 2013; 77(6):1171-8. PubMed ID: 23748753 [TBL] [Abstract][Full Text] [Related]
18. Screening of the effect of surface energy of microchannels on microfluidic emulsification. Li W; Nie Z; Zhang H; Paquet C; Seo M; Garstecki P; Kumacheva E Langmuir; 2007 Jul; 23(15):8010-4. PubMed ID: 17583921 [TBL] [Abstract][Full Text] [Related]
19. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Maenaka H; Yamada M; Yasuda M; Seki M Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961 [TBL] [Abstract][Full Text] [Related]
20. Monodisperse w/w/w double emulsion induced by phase separation. Song Y; Shum HC Langmuir; 2012 Aug; 28(33):12054-9. PubMed ID: 22849828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]