BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15518489)

  • 1. Frontal photopolymerization for microfluidic applications.
    Cabral JT; Hudson SD; Harrison C; Douglas JF
    Langmuir; 2004 Nov; 20(23):10020-9. PubMed ID: 15518489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid prototyping of multilayer thiolene microfluidic chips by photopolymerization and transfer lamination.
    Natali M; Begolo S; Carofiglio T; Mistura G
    Lab Chip; 2008 Mar; 8(3):492-4. PubMed ID: 18305871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling frontal photopolymerization with optical attenuation and mass diffusion.
    Hennessy MG; Vitale A; Matar OK; Cabral JT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062402. PubMed ID: 26172720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ fabrication of macroporous polymer networks within microfluidic devices by living radical photopolymerization and leaching.
    Simms HM; Brotherton CM; Good BT; Davis RH; Anseth KS; Bowman CN
    Lab Chip; 2005 Feb; 5(2):151-7. PubMed ID: 15672128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution of a field theory model of frontal photopolymerization.
    Warren JA; Cabral JT; Douglas JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021801. PubMed ID: 16196591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra rapid prototyping of microfluidic systems using liquid phase photopolymerization.
    Khoury C; Mensing GA; Beebe DJ
    Lab Chip; 2002 Feb; 2(1):50-5. PubMed ID: 15100862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP).
    Hutchison JB; Haraldsson KT; Good BT; Sebra RP; Luo N; Anseth KS; Bowman CN
    Lab Chip; 2004 Dec; 4(6):658-62. PubMed ID: 15570381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices.
    Stoneman M; Fox M; Zeng C; Raicu V
    Lab Chip; 2009 Mar; 9(6):819-27. PubMed ID: 19255664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of heat generation and thermal diffusion during frontal photopolymerization.
    Hennessy MG; Vitale A; Cabral JT; Matar OK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022403. PubMed ID: 26382412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroscopic monitoring of droplet polymerization in a microfluidic device.
    Barnes SE; Cygan ZT; Yates JK; Beers KL; Amis EJ
    Analyst; 2006 Sep; 131(9):1027-33. PubMed ID: 17047803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic platform for the generation of organic-phase microreactors.
    Cygan ZT; Cabral JT; Beers KL; Amis EJ
    Langmuir; 2005 Apr; 21(8):3629-34. PubMed ID: 15807612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabricated polymer analysis chip for optical detection.
    Fleger M; Siepe D; Neyer A
    IEE Proc Nanobiotechnol; 2004 Aug; 151(4):159-61. PubMed ID: 16475861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of membrane-type microvalves in rectangular microfluidic channels via seal photopolymerization.
    Park W; Han S; Kwon S
    Lab Chip; 2010 Oct; 10(20):2814-7. PubMed ID: 20721367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple fabrication technique for rapid prototyping of seamless cylindrical microchannels in polymer substrates.
    Perry H; Greiner C; Georgakoudi I; Cronin-Golomb M; Omenetto FG
    Rev Sci Instrum; 2007 Apr; 78(4):044302. PubMed ID: 17477682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption-resistant acrylic copolymer for prototyping of microfluidic devices for proteins and peptides.
    Liu J; Sun X; Lee ML
    Anal Chem; 2007 Mar; 79(5):1926-31. PubMed ID: 17249641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile fabrication of microfluidic systems using electron beam lithography.
    Mali P; Sarkar A; Lal R
    Lab Chip; 2006 Feb; 6(2):310-5. PubMed ID: 16450043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH; Lin R; Lee AP
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate.
    Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z
    Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography.
    Lee SA; Chung SE; Park W; Lee SH; Kwon S
    Lab Chip; 2009 Jun; 9(12):1670-5. PubMed ID: 19495448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices.
    Park JM; Cho YK; Lee BS; Lee JG; Ko C
    Lab Chip; 2007 May; 7(5):557-64. PubMed ID: 17476373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.