BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 1551849)

  • 1. Iron(III) hydroxamate transport in Escherichia coli K-12: FhuB-mediated membrane association of the FhuC protein and negative complementation of fhuC mutants.
    Schultz-Hauser G; Köster W; Schwarz H; Braun V
    J Bacteriol; 1992 Apr; 174(7):2305-11. PubMed ID: 1551849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping.
    Mademidis A; Killmann H; Kraas W; Flechsler I; Jung G; Braun V
    Mol Microbiol; 1997 Dec; 26(5):1109-23. PubMed ID: 9426146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved amino acids in the N- and C-terminal domains of integral membrane transporter FhuB define sites important for intra- and intermolecular interactions.
    Böhm B; Boschert H; Köster W
    Mol Microbiol; 1996 Apr; 20(1):223-32. PubMed ID: 8861219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron(III) hydroxamate transport across the cytoplasmic membrane of Escherichia coli.
    Köster W
    Biol Met; 1991; 4(1):23-32. PubMed ID: 1830209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron(III) hydroxamate transport of Escherichia coli: restoration of iron supply by coexpression of the N- and C-terminal halves of the cytoplasmic membrane protein FhuB cloned on separate plasmids.
    Köster W; Braun V
    Mol Gen Genet; 1990 Sep; 223(3):379-84. PubMed ID: 2270077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron(III)hydroxamate transport of Escherichia coli K12: single amino acid replacements at potential ATP-binding sites inactivate the FhuC protein.
    Becker K; Köster W; Braun V
    Mol Gen Genet; 1990 Aug; 223(1):159-62. PubMed ID: 2259338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus.
    Sebulsky MT; Hohnstein D; Hunter MD; Heinrichs DE
    J Bacteriol; 2000 Aug; 182(16):4394-400. PubMed ID: 10913070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of the iron-hydroxamate uptake system in Staphylococcus aureus.
    Cabrera G; Xiong A; Uebel M; Singh VK; Jayaswal RK
    Appl Environ Microbiol; 2001 Feb; 67(2):1001-3. PubMed ID: 11157278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB.
    Rohrbach MR; Braun V; Köster W
    J Bacteriol; 1995 Dec; 177(24):7186-93. PubMed ID: 8522527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane topology of the two FhuB domains representing the hydrophobic components of bacterial ABC transporters involved in the uptake of siderophores, haem and vitamin B12.
    Groeger W; KOstert W
    Microbiology (Reading); 1998 Oct; 144 ( Pt 10)():2759-2769. PubMed ID: 9802017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli.
    Kadner RJ; Heller K; Coulton JW; Braun V
    J Bacteriol; 1980 Jul; 143(1):256-64. PubMed ID: 6249788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point mutations in two conserved glycine residues within the integral membrane protein FhuB affect iron(III) hydroxamate transport.
    Köster W; Böhm B
    Mol Gen Genet; 1992 Apr; 232(3):399-407. PubMed ID: 1588908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-hydroxamate transport into Escherichia coli K12: localization of FhuD in the periplasm and of FhuB in the cytoplasmic membrane.
    Köster W; Braun V
    Mol Gen Genet; 1989 Jun; 217(2-3):233-9. PubMed ID: 2549374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequence of the fhuC and fhuD genes involved in iron (III) hydroxamate transport: domains in FhuC homologous to ATP-binding proteins.
    Burkhardt R; Braun V
    Mol Gen Genet; 1987 Aug; 209(1):49-55. PubMed ID: 2823072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. fhuC and fhuD genes for iron (III)-ferrichrome transport into Escherichia coli K-12.
    Coulton JW; Mason P; Allatt DD
    J Bacteriol; 1987 Aug; 169(8):3844-9. PubMed ID: 3301821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport activity of FhuA, FhuC, FhuD, and FhuB derivatives in a system free of polar effects, and stoichiometry of components involved in ferrichrome uptake.
    Mademidis A; Köster W
    Mol Gen Genet; 1998 Apr; 258(1-2):156-65. PubMed ID: 9613584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron hydroxamate transport of Escherichia coli: nucleotide sequence of the fhuB gene and identification of the protein.
    Köster W; Braun V
    Mol Gen Genet; 1986 Sep; 204(3):435-42. PubMed ID: 3020380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system.
    Schneider R; Hantke K
    Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and expression of the fhu genes involved in iron(III)-hydroxamate uptake by Escherichia coli.
    Fecker L; Braun V
    J Bacteriol; 1983 Dec; 156(3):1301-14. PubMed ID: 6315685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae.
    Mikael LG; Pawelek PD; Labrie J; Sirois M; Coulton JW; Jacques M
    Microbiology (Reading); 2002 Sep; 148(Pt 9):2869-2882. PubMed ID: 12213932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.