These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15518518)

  • 1. Reversible intercalation of large-capacity hemoglobin into in situ prepared titanate interlayers with enhanced thermal and organic medium stabilities.
    Wang Q; Gao Q; Shi J
    Langmuir; 2004 Nov; 20(23):10231-7. PubMed ID: 15518518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced catalytic activity of hemoglobin in organic solvents by layered titanate immobilization.
    Wang Q; Gao Q; Shi J
    J Am Chem Soc; 2004 Nov; 126(44):14346-7. PubMed ID: 15521741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct electron transfer of hemoglobin in layered alpha-zirconium phosphate with a high thermal stability.
    Liu Y; Lu C; Hou W; Zhu JJ
    Anal Biochem; 2008 Apr; 375(1):27-34. PubMed ID: 18211815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel mediator-free biosensor based on co-intercalation of DNA and hemoglobin in the interlayer galleries of alpha-zirconium phosphate.
    Liu L; Shen B; Shi J; Liu F; Lu GY; Zhu JJ
    Biosens Bioelectron; 2010 Aug; 25(12):2627-32. PubMed ID: 20472421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial properties of nanostructured silver titanate thin films formed on a titanium plate.
    Inoue Y; Uota M; Torikai T; Watari T; Noda I; Hotokebuchi T; Yada M
    J Biomed Mater Res A; 2010 Mar; 92(3):1171-80. PubMed ID: 19322882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on copper-titanate intercalation materials for amperometric sensor.
    Tong S; Jin H; Zheng D; Wang W; Li X; Xu Y; Song W
    Biosens Bioelectron; 2009 Apr; 24(8):2404-9. PubMed ID: 19157847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layered titanate-zinc oxide nanohybrids with mesoporosity.
    Kim TW; Hur SG; Hwang SJ; Choy JH
    Chem Commun (Camb); 2006 Jan; (2):220-2. PubMed ID: 16372112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films.
    Zheng W; Zheng YF; Jin KW; Wang N
    Talanta; 2008 Feb; 74(5):1414-9. PubMed ID: 18371798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterostructured magnetite-titanate nanosheets for prompt charge selective binding and magnetic separation of mixed proteins.
    Zhou Q; Lu Z; Cao X
    J Colloid Interface Sci; 2014 Feb; 415():48-56. PubMed ID: 24267329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach for evaluating nanomaterials for use as packed bed adsorber media: a case study of arsenate removal by titanate nanofibers.
    Hristovski K; Westerhoff P; Crittenden J
    J Hazard Mater; 2008 Aug; 156(1-3):604-11. PubMed ID: 18242828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of titanate nanobelts used as seeds for the nucleation of hydroxyapatite at the surface of titanium implants.
    Conforto E; Caillard D; Müller L; Müller FA
    Acta Biomater; 2008 Nov; 4(6):1934-43. PubMed ID: 18585110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of hemoglobin at the galleries of layered lepidocrocite-related potassium lithium titanate.
    Wu Y; Gao Q; Gao L
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1615-8. PubMed ID: 19441583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions.
    Zhu HY; Lan Y; Gao XP; Ringer SP; Zheng ZF; Song DY; Zhao JC
    J Am Chem Soc; 2005 May; 127(18):6730-6. PubMed ID: 15869295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Ti-O bonds in phase transitions of TiO2.
    Nosheen S; Galasso FS; Suib SL
    Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new relaxed state in horse methemoglobin characterized by crystallographic studies.
    Sankaranarayanan R; Biswal BK; Vijayan M
    Proteins; 2005 Aug; 60(3):547-51. PubMed ID: 15887226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive titanate nanomesh layer on the Ti-based bulk metallic glass by hydrothermal-electrochemical technique.
    Sugiyama N; Xu H; Onoki T; Hoshikawa Y; Watanabe T; Matsushita N; Wang X; Qin F; Fukuhara M; Tsukamoto M; Abe N; Komizo Y; Inoue A; Yoshimura M
    Acta Biomater; 2009 May; 5(4):1367-73. PubMed ID: 19022712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinorganic magnetic core-shell nanocomposites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite.
    Ay AN; Zümreoglu-Karan B; Temel A; Rives V
    Inorg Chem; 2009 Sep; 48(18):8871-7. PubMed ID: 19691269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air.
    Yu H; Yu J; Cheng B
    Chemosphere; 2007 Feb; 66(11):2050-7. PubMed ID: 17109930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of electroactive layer-by-layer films of heme proteins with anionic surfactant dihexadecyl phosphate.
    Shan W; Liu H; Shi J; Yang L; Hu N
    Biophys Chem; 2008 Apr; 134(1-2):101-9. PubMed ID: 18294752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures.
    Mao Y; Wong SS
    J Am Chem Soc; 2006 Jun; 128(25):8217-26. PubMed ID: 16787086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.