BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 15518575)

  • 1. A piezoelectric quartz crystal biosensor: the use of two single cysteine mutants of the periplasmic Escherichia coli glucose/galactose receptor as target proteins for the detection of glucose.
    Carmon KS; Baltus RE; Luck LA
    Biochemistry; 2004 Nov; 43(44):14249-56. PubMed ID: 15518575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quartz crystal microbalance (QCM) with immobilized protein receptors: comparison of response to ligand binding for direct protein immobilization and protein attachment via disulfide linker.
    Baltus RE; Carmon KS; Luck LA
    Langmuir; 2007 Mar; 23(7):3880-5. PubMed ID: 17323983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biosensor for estrogenic substances using the quartz crystal microbalance.
    Carmon KS; Baltus RE; Luck LA
    Anal Biochem; 2005 Oct; 345(2):277-83. PubMed ID: 16125128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface.
    Marx KA
    Biomacromolecules; 2003; 4(5):1099-120. PubMed ID: 12959572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application.
    Andreescu S; Luck LA
    Anal Biochem; 2008 Apr; 375(2):282-90. PubMed ID: 18211816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects.
    Marx KA; Zhou T; Montrone A; McIntosh D; Braunhut SJ
    Anal Biochem; 2007 Feb; 361(1):77-92. PubMed ID: 17161375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanobiosensor design utilizing a periplasmic E. coli receptor protein immobilized within Au/polycarbonate nanopores.
    Tripathi A; Wang J; Luck LA; Suni II
    Anal Chem; 2007 Feb; 79(3):1266-70. PubMed ID: 17263364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free detection of protein-ligand interactions by the quartz crystal microbalance.
    Janshoff A; Steinem C
    Methods Mol Biol; 2005; 305():47-64. PubMed ID: 15939993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time detection of Escherichia coli O157:H7 sequences using a circulating-flow system of quartz crystal microbalance.
    Wu VC; Chen SH; Lin CS
    Biosens Bioelectron; 2007 Jun; 22(12):2967-75. PubMed ID: 17223335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli.
    Chakraborty R; Storey E; van der Helm D
    Biometals; 2007 Jun; 20(3-4):263-74. PubMed ID: 17186377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring DNA binding to Escherichia coli lactose repressor using quartz crystal microbalance with dissipation.
    Xu J; Liu KW; Matthews KS; Biswal SL
    Langmuir; 2011 Apr; 27(8):4900-5. PubMed ID: 21410208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a reagentless glucose biosensor using molecular exciton luminescence.
    Der BS; Dattelbaum JD
    Anal Biochem; 2008 Apr; 375(1):132-40. PubMed ID: 18082614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of ligand specificity of periplasmic binding protein for glucose sensing.
    Sakaguchi-Mikami A; Taneoka A; Yamoto R; Ferri S; Sode K
    Biotechnol Lett; 2008 Aug; 30(8):1453-60. PubMed ID: 18414800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous nanoplasmonic and quartz crystal microbalance sensing: analysis of biomolecular conformational changes and quantification of the bound molecular mass.
    Jonsson MP; Jönsson P; Höök F
    Anal Chem; 2008 Nov; 80(21):7988-95. PubMed ID: 18834149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR.
    Ottemann KM; Thorgeirsson TE; Kolodziej AF; Shin YK; Koshland DE
    Biochemistry; 1998 May; 37(20):7062-9. PubMed ID: 9585515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local conformational changes in the Vibrio Na+/galactose cotransporter.
    Veenstra M; Lanza S; Hirayama BA; Turk E; Wright EM
    Biochemistry; 2004 Mar; 43(12):3620-7. PubMed ID: 15035632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.
    Shen D; Kang Q; Li X; Cai H; Wang Y
    Anal Chim Acta; 2007 Jun; 593(2):188-95. PubMed ID: 17543606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of liquid medium and surface morphology on the response of QCM during immobilization and hybridization of short oligonucleotides.
    Ha TH; Kim S; Lim G; Kim K
    Biosens Bioelectron; 2004 Sep; 20(2):378-89. PubMed ID: 15308244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of ligands for affinity chromatography using quartz crystal biosensor.
    Liu Y; Tang X; Liu F; Li K
    Anal Chem; 2005 Jul; 77(13):4248-56. PubMed ID: 15987134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.