These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 15518638)

  • 1. Fatigue in a simple repetitive motor task: a combined electrophysiological and neuropsychological study.
    Dirnberger G; Duregger C; Trettler E; Lindinger G; Lang W
    Brain Res; 2004 Nov; 1028(1):26-30. PubMed ID: 15518638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor timing and motor sequencing contribute differently to the preparation for voluntary movement.
    Bortoletto M; Cunnington R
    Neuroimage; 2010 Feb; 49(4):3338-48. PubMed ID: 19945535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Habituation in a simple repetitive motor task: a study with movement-related cortical potentials.
    Dirnberger G; Duregger C; Lindinger G; Lang W
    Clin Neurophysiol; 2004 Feb; 115(2):378-84. PubMed ID: 14744580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the alpha and beta amplitudes of the central EEG during the onset, continuation, and offset of long-duration repetitive hand movements.
    Erbil N; Ungan P
    Brain Res; 2007 Sep; 1169():44-56. PubMed ID: 17689502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical motor areas are activated early in a characteristic sequence during post-movement processing.
    Bender S; Becker D; Oelkers-Ax R; Weisbrod M
    Neuroimage; 2006 Aug; 32(1):333-51. PubMed ID: 16698286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping.
    Lewis PA; Wing AM; Pope PA; Praamstra P; Miall RC
    Neuropsychologia; 2004; 42(10):1301-12. PubMed ID: 15193939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term motor practice induces practice-dependent modulation of movement-related cortical potentials (MRCP) preceding a self-paced non-dominant handgrip movement in kendo players.
    Hatta A; Nishihira Y; Higashiura T; Kim SR; Kaneda T
    Neurosci Lett; 2009 Aug; 459(3):105-8. PubMed ID: 19427364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theta Burst Stimulation over the human primary motor cortex modulates neural processes involved in movement preparation.
    Ortu E; Ruge D; Deriu F; Rothwell JC
    Clin Neurophysiol; 2009 Jun; 120(6):1195-203. PubMed ID: 19410505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theta-burst stimulation over primary motor cortex degrades early motor learning.
    Iezzi E; Suppa A; Conte A; Agostino R; Nardella A; Berardelli A
    Eur J Neurosci; 2010 Feb; 31(3):585-92. PubMed ID: 20105229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow pre-movement cortical potentials do not reflect individual response to therapy in writer's cramp.
    Zeuner KE; Peller M; Knutzen A; Groppa S; Holler I; Kopper F; Raethjen J; Dressler D; Hallett M; Deuschl G; Siebner HR
    Clin Neurophysiol; 2009 Jun; 120(6):1213-9. PubMed ID: 19447675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociations between motor-related EEG measures in a cued movement sequence task.
    Gladwin TE; 't Hart BM; de Jong R
    Cortex; 2008 May; 44(5):521-36. PubMed ID: 18387585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological evidence for cortical plasticity with movement repetition.
    Halder P; Sterr A; Brem S; Bucher K; Kollias S; Brandeis D
    Eur J Neurosci; 2005 Apr; 21(8):2271-7. PubMed ID: 15869524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of intermittent theta-burst stimulation on practice-related changes in fast finger movements in healthy subjects.
    Agostino R; Iezzi E; Dinapoli L; Suppa A; Conte A; Berardelli A
    Eur J Neurosci; 2008 Aug; 28(4):822-8. PubMed ID: 18702693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor processing after movement execution as revealed by evoked and induced activity.
    Bender S; Oelkers-Ax R; Resch F; Weisbrod M
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):49-58. PubMed ID: 15325412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensional complexity of neuromagnetic activity reduced during finger movement of greater difficulty.
    Wu YZ; Yang TH; Lin YY; Chen SS; Liao KK; Chen LF; Yeh TC; Wu YT; Ho LT; Hsieh JC
    Clin Neurophysiol; 2006 Nov; 117(11):2473-81. PubMed ID: 16949339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of sensori-motor interaction in the primary and secondary somatosensory cortices in humans: a magnetoencephalography study.
    Wasaka T; Kida T; Nakata H; Akatsuka K; Kakigi R
    Neuroscience; 2007 Oct; 149(2):446-56. PubMed ID: 17869442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practice-related modulations of force enslaving and cortical activity as revealed by EEG.
    Chiang H; Slobounov SM; Ray W
    Clin Neurophysiol; 2004 May; 115(5):1033-43. PubMed ID: 15066527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex.
    Cheyne D; Bells S; Ferrari P; Gaetz W; Bostan AC
    Neuroimage; 2008 Aug; 42(1):332-42. PubMed ID: 18511304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials.
    Dirnberger G; Reumann M; Endl W; Lindinger G; Lang W; Rothwell JC
    Exp Brain Res; 2000 Nov; 135(2):231-40. PubMed ID: 11131508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.