BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1551879)

  • 1. Characterization of the aluminum and beryllium fluoride species which activate transducin. Analysis of the binding and dissociation kinetics.
    Antonny B; Chabre M
    J Biol Chem; 1992 Apr; 267(10):6710-8. PubMed ID: 1551879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoride complexes of aluminium or beryllium act on G-proteins as reversibly bound analogues of the gamma phosphate of GTP.
    Bigay J; Deterre P; Pfister C; Chabre M
    EMBO J; 1987 Oct; 6(10):2907-13. PubMed ID: 2826123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel magnesium-dependent mechanism for the activation of transducin by fluoride.
    Antonny B; Bigay J; Chabre M
    FEBS Lett; 1990 Jul; 268(1):277-80. PubMed ID: 2384166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Labeling of the beta gamma subunit complex of transducin with an environmentally sensitive cysteine reagent. Use of fluorescence spectroscopy to monitor transducin subunit interactions.
    Phillips WJ; Cerione RA
    J Biol Chem; 1991 Jun; 266(17):11017-24. PubMed ID: 2040617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of aluminum-independent G-protein activation by fluoride and magnesium. 31P NMR spectroscopy and fluorescence kinetic studies.
    Antonny B; Sukumar M; Bigay J; Chabre M; Higashijima T
    J Biol Chem; 1993 Feb; 268(4):2393-402. PubMed ID: 8381408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional modifications of transducin induced by cholera or pertussis-toxin-catalyzed ADP-ribosylation.
    Bornancin F; Franco M; Bigay J; Chabre M
    Eur J Biochem; 1992 Nov; 210(1):33-44. PubMed ID: 1332864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of microtubules by inorganic phosphate and its structural analogues, the fluoride complexes of aluminum and beryllium.
    Carlier MF; Didry D; Melki R; Chabre M; Pantaloni D
    Biochemistry; 1988 May; 27(10):3555-9. PubMed ID: 3408711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the aluminum and beryllium fluoride species bound to F-actin and microtubules at the site of the gamma-phosphate of the nucleotide.
    Combeau C; Carlier MF
    J Biol Chem; 1989 Nov; 264(32):19017-21. PubMed ID: 2808407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoroaluminates activate transducin-GDP by mimicking the gamma-phosphate of GTP in its binding site.
    Bigay J; Deterre P; Pfister C; Chabre M
    FEBS Lett; 1985 Oct; 191(2):181-5. PubMed ID: 3863758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum fluoride activation of bovine transducin induces two distinct conformational changes in the alpha subunit.
    Mittal R; Cerione RA; Erickson JW
    Biochemistry; 1994 Aug; 33(33):10178-84. PubMed ID: 7520280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinetics and affinity studies.
    Otto-Bruc A; Antonny B; Vuong TM; Chardin P; Chabre M
    Biochemistry; 1993 Aug; 32(33):8636-45. PubMed ID: 8395212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology.
    Chabre M
    Trends Biochem Sci; 1990 Jan; 15(1):6-10. PubMed ID: 2180149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of fluoride activation of G protein-gated muscarinic atrial K+ channels.
    Yatani A; Brown AM
    J Biol Chem; 1991 Dec; 266(34):22872-7. PubMed ID: 1744080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RecA protein-promoted cleavage of LexA repressor in the presence of ADP and structural analogues of inorganic phosphate, the fluoride complexes of aluminum and beryllium.
    Moreau PL; Carlier MF
    J Biol Chem; 1989 Feb; 264(4):2302-6. PubMed ID: 2521626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The small G-protein ARF1GDP binds to the Gt beta gamma subunit of transducin, but not to Gt alpha GDP-Gt beta gamma.
    Franco M; Paris S; Chabre M
    FEBS Lett; 1995 Apr; 362(3):286-90. PubMed ID: 7729514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1-nucleotide complexes.
    Werber MM; Peyser YM; Muhlrad A
    Biochemistry; 1992 Aug; 31(31):7190-7. PubMed ID: 1386527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivation of vanadium bromoperoxidase; inhibition by metallofluoric compounds.
    Tromp M; Van TT; Wever R
    Biochim Biophys Acta; 1991 Aug; 1079(1):53-6. PubMed ID: 1653614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum.
    Kanaho Y; Moss J; Vaughan M
    J Biol Chem; 1985 Sep; 260(21):11493-7. PubMed ID: 2995338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of the stable myosin-ADP-aluminum fluoride and myosin-ADP-beryllium fluoride complexes and their analysis using 19F NMR.
    Maruta S; Henry GD; Sykes BD; Ikebe M
    J Biol Chem; 1993 Apr; 268(10):7093-100. PubMed ID: 8463244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodopsin/transducin interactions. II. Influence of the transducin-beta gamma subunit complex on the coupling of the transducin-alpha subunit to rhodopsin.
    Phillips WJ; Wong SC; Cerione RA
    J Biol Chem; 1992 Aug; 267(24):17040-6. PubMed ID: 1512243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.