These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 1551884)
1. A bacteriorhodopsin analog reconstituted with a nonisomerizable 13-trans retinal derivative displays light insensitivity. Bhattacharya S; Marti T; Otto H; Heyn MP; Khorana HG J Biol Chem; 1992 Apr; 267(10):6757-62. PubMed ID: 1551884 [TBL] [Abstract][Full Text] [Related]
2. Light-stable rhodopsin. I. A rhodopsin analog reconstituted with a nonisomerizable 11-cis retinal derivative. Bhattacharya S; Ridge KD; Knox BE; Khorana HG J Biol Chem; 1992 Apr; 267(10):6763-9. PubMed ID: 1551885 [TBL] [Abstract][Full Text] [Related]
3. All-trans to 13-cis retinal isomerization in light-adapted bacteriorhodopsin at acidic pH. Chen DL; Wang GY; Xu B; Hu KS J Photochem Photobiol B; 2002 Apr; 66(3):188-94. PubMed ID: 11960728 [TBL] [Abstract][Full Text] [Related]
4. Formation of 9-cis- and 11-cis-retinal pigments from bacteriorhodopsin by irradiating purple membrane in acid. Maeda A; Iwasa T; Yoshizawa T Biochemistry; 1980 Aug; 19(16):3825-31. PubMed ID: 7407071 [TBL] [Abstract][Full Text] [Related]
5. Light-induced hydrolysis and rebinding of nonisomerizable bacteriorhodopsin pigment. Aharoni A; Ottolenghi M; Sheves M Biophys J; 2002 May; 82(5):2617-26. PubMed ID: 11964248 [TBL] [Abstract][Full Text] [Related]
6. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. Smith SO; Lugtenburg J; Mathies RA J Membr Biol; 1985; 85(2):95-109. PubMed ID: 4009698 [TBL] [Abstract][Full Text] [Related]
7. Photochemical and functional properties of bacteriorhodopsins formed from 5,6-dihydro- and 5,6-dihydrodesmethylretinals. Mao B; Govindjee R; Ebrey TG; Arnaboldi M; Balogh-Nair V; Nakanishi K; Crouch R Biochemistry; 1981 Jan; 20(2):428-35. PubMed ID: 7470492 [TBL] [Abstract][Full Text] [Related]
8. The photochemical reaction cycle of retinal reconstituted bacteriorhodopsin. Magyari K; Bálint Z; Simon V; Váró G J Photochem Photobiol B; 2006 Nov; 85(2):140-4. PubMed ID: 16904334 [TBL] [Abstract][Full Text] [Related]
9. The hydroxylamine reaction of sensory rhodopsin II: light-induced conformational alterations with C13=C14 nonisomerizable pigment. Zadok U; Klare JP; Engelhard M; Sheves M Biophys J; 2005 Oct; 89(4):2610-7. PubMed ID: 16085771 [TBL] [Abstract][Full Text] [Related]
10. A local electrostatic change is the cause of the large-scale protein conformation shift in bacteriorhodopsin. Brown LS; Kamikubo H; Zimányi L; Kataoka M; Tokunaga F; Verdegem P; Lugtenburg J; Lanyi JK Proc Natl Acad Sci U S A; 1997 May; 94(10):5040-4. PubMed ID: 9144186 [TBL] [Abstract][Full Text] [Related]
11. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM; Booth PJ; Allen SJ; Khorana HG J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776 [TBL] [Abstract][Full Text] [Related]
12. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments. Rousso I; Gat Y; Lewis A; Sheves M; Ottolenghi M Biophys J; 1998 Jul; 75(1):413-7. PubMed ID: 9649399 [TBL] [Abstract][Full Text] [Related]
13. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate. Gat Y; Friedman N; Sheves M; Ottolenghi M Biochemistry; 1997 Apr; 36(14):4135-48. PubMed ID: 9100007 [TBL] [Abstract][Full Text] [Related]
14. Photoreduction of bacteriorhodopsin Schiff base at low humidity. A study with C13=C14 nonisomerizable artificial pigments. Aharoni A; Ottolenghi M; Sheves M Photochem Photobiol; 2002 Jun; 75(6):668-74. PubMed ID: 12081330 [TBL] [Abstract][Full Text] [Related]
15. Light-driven proton translocation by bacteriorhodopsin reconstituted with the phenyl analog of retinal. Bayley H; Radhakrishnan R; Huang KS; Khorana HG J Biol Chem; 1981 Apr; 256(8):3797-801. PubMed ID: 7217054 [TBL] [Abstract][Full Text] [Related]
16. Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal. Schobert B; Cupp-Vickery J; Hornak V; Smith S; Lanyi J J Mol Biol; 2002 Aug; 321(4):715-26. PubMed ID: 12206785 [TBL] [Abstract][Full Text] [Related]
17. Deprotonation of the Schiff base of bacteriorhodopsin is obligate in light-induced proton pumping. Longstaff C; Rando RR Biochemistry; 1987 Sep; 26(19):6107-13. PubMed ID: 2825771 [TBL] [Abstract][Full Text] [Related]
18. Bacteriorhodopsins with chromophores modified at the beta-ionone site. Formation and light-driven action of the proton pump. Muradin-Szweykowska M; Pardoen JA; Dobbelstein D; Van Amsterdam LJ; Lugtenburg J Eur J Biochem; 1984 Apr; 140(1):173-6. PubMed ID: 6323178 [TBL] [Abstract][Full Text] [Related]
19. Light-stable rhodopsin. II. An opsin mutant (TRP-265----Phe) and a retinal analog with a nonisomerizable 11-cis configuration form a photostable chromophore. Ridge KD; Bhattacharya S; Nakayama TA; Khorana HG J Biol Chem; 1992 Apr; 267(10):6770-5. PubMed ID: 1532391 [TBL] [Abstract][Full Text] [Related]
20. Protein-chromophore interactions in bacteriorhodopsin: the effects of a change in surface potential. Swords NA; Wallace BA Biochim Biophys Acta; 1991 Dec; 1070(2):313-20. PubMed ID: 1764449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]