These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 15519020)
1. Induction of local angiotensin II-producing systems in stenotic aortic valves. Helske S; Lindstedt KA; Laine M; Mäyränpää M; Werkkala K; Lommi J; Turto H; Kupari M; Kovanen PT J Am Coll Cardiol; 2004 Nov; 44(9):1859-66. PubMed ID: 15519020 [TBL] [Abstract][Full Text] [Related]
2. Increased expression of profibrotic neutral endopeptidase and bradykinin type 1 receptors in stenotic aortic valves. Helske S; Laine M; Kupari M; Lommi J; Turto H; Nurmi L; Tikkanen I; Werkkala K; Lindstedt KA; Kovanen PT Eur Heart J; 2007 Aug; 28(15):1894-903. PubMed ID: 17507367 [TBL] [Abstract][Full Text] [Related]
3. (Pro)renin receptors and angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in human aortic valve stenosis. Peltonen T; Näpänkangas J; Ohtonen P; Aro J; Peltonen J; Soini Y; Juvonen T; Satta J; Ruskoaho H; Taskinen P Atherosclerosis; 2011 May; 216(1):35-43. PubMed ID: 21316680 [TBL] [Abstract][Full Text] [Related]
4. Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Helske S; Syväranta S; Kupari M; Lappalainen J; Laine M; Lommi J; Turto H; Mäyränpää M; Werkkala K; Kovanen PT; Lindstedt KA Eur Heart J; 2006 Jun; 27(12):1495-504. PubMed ID: 16401677 [TBL] [Abstract][Full Text] [Related]
5. Possible roles of angiotensin II-forming enzymes, angiotensin converting enzyme and chymase-like enzyme, in the human aneurysmal aorta. Tsunemi K; Takai S; Nishimoto M; Yuda A; Hasegawa S; Sawada Y; Fukumoto H; Sasaki S; Miyazaki M Hypertens Res; 2002 Nov; 25(6):817-22. PubMed ID: 12484503 [TBL] [Abstract][Full Text] [Related]
6. Mast cells in human stenotic aortic valves are associated with the severity of stenosis. Wypasek E; Natorska J; Grudzień G; Filip G; Sadowski J; Undas A Inflammation; 2013 Apr; 36(2):449-56. PubMed ID: 23108956 [TBL] [Abstract][Full Text] [Related]
7. Angiotensin receptor blockers are associated with a lower remodelling score of stenotic aortic valves. Côté N; Couture C; Pibarot P; Després JP; Mathieu P Eur J Clin Invest; 2011 Nov; 41(11):1172-9. PubMed ID: 21988540 [TBL] [Abstract][Full Text] [Related]
8. Increased chymase-dependent angiotensin II formation in human atherosclerotic aorta. Ihara M; Urata H; Kinoshita A; Suzumiya J; Sasaguri M; Kikuchi M; Ideishi M; Arakawa K Hypertension; 1999 Jun; 33(6):1399-405. PubMed ID: 10373223 [TBL] [Abstract][Full Text] [Related]
9. Factor XIII expression within aortic valves and its plasma activity in patients with aortic stenosis: association with severity of disease. Kapusta P; Wypasek E; Natorska J; Grudzien G; Sobczyk D; Sadowski J; Undas A Thromb Haemost; 2012 Dec; 108(6):1172-9. PubMed ID: 23052999 [TBL] [Abstract][Full Text] [Related]
10. Changes of chymase, angiotensin converting enzyme and angiotensin II type 1 receptor expressions in the hamster heart during the development of heart failure. Chen PM; Leng XG; Fan LL; Ma J; Wang YF; Chen LY Chin Med J (Engl); 2005 Nov; 118(22):1886-92. PubMed ID: 16313843 [TBL] [Abstract][Full Text] [Related]
11. High-density lipoproteins (HDL) are present in stenotic aortic valves and may interfere with the mechanisms of valvular calcification. Lommi JI; Kovanen PT; Jauhiainen M; Lee-Rueckert M; Kupari M; Helske S Atherosclerosis; 2011 Dec; 219(2):538-44. PubMed ID: 21917259 [TBL] [Abstract][Full Text] [Related]
12. Increase in tissue endothelin-1 and ETA receptor levels in human aortic valve stenosis. Peltonen T; Taskinen P; Näpänkangas J; Leskinen H; Ohtonen P; Soini Y; Juvonen T; Satta J; Vuolteenaho O; Ruskoaho H Eur Heart J; 2009 Jan; 30(2):242-9. PubMed ID: 19008257 [TBL] [Abstract][Full Text] [Related]
14. Increased expression of the renin-angiotensin system and mast cell density but not of angiotensin-converting enzyme II in late stages of human heart failure. Batlle M; Roig E; Perez-Villa F; Lario S; Cejudo-Martin P; García-Pras E; Ortiz J; Roqué M; Orús J; Rigol M; Heras M; Ramírez J; Jimenez W J Heart Lung Transplant; 2006 Sep; 25(9):1117-25. PubMed ID: 16962475 [TBL] [Abstract][Full Text] [Related]
15. Involvement of chymase-mediated angiotensin II generation in blood pressure regulation. Li M; Liu K; Michalicek J; Angus JA; Hunt JE; Dell'Italia LJ; Feneley MP; Graham RM; Husain A J Clin Invest; 2004 Jul; 114(1):112-20. PubMed ID: 15232618 [TBL] [Abstract][Full Text] [Related]
16. Increased local angiotensin II formation in aneurysmal aorta. Nishimoto M; Takai S; Fukumoto H; Tsunemi K; Yuda A; Sawada Y; Yamada M; Jin D; Sakaguchi M; Nishimoto Y; Sasaki S; Miyazaki M Life Sci; 2002 Sep; 71(18):2195-205. PubMed ID: 12204777 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the angiotensin II-forming pathway in human atria. Ohmichi N; Iwai N; Shimoike H; Izumi M; Watarida S; Mori A; Nakamura Y; Kinoshita M Heart Vessels; 1997; Suppl 12():116-8. PubMed ID: 9476560 [TBL] [Abstract][Full Text] [Related]
18. Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Barlucchi L; Leri A; Dostal DE; Fiordaliso F; Tada H; Hintze TH; Kajstura J; Nadal-Ginard B; Anversa P Circ Res; 2001 Feb; 88(3):298-304. PubMed ID: 11179197 [TBL] [Abstract][Full Text] [Related]
19. Cardiac angiotensin II participates in coronary microvessel inflammation of unstable angina and strengthens the immunomediated component. Neri Serneri GG; Boddi M; Modesti PA; Coppo M; Cecioni I; Toscano T; Papa ML; Bandinelli M; Lisi GF; Chiavarelli M Circ Res; 2004 Jun; 94(12):1630-7. PubMed ID: 15131005 [TBL] [Abstract][Full Text] [Related]
20. Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. O'Brien KD; Shavelle DM; Caulfield MT; McDonald TO; Olin-Lewis K; Otto CM; Probstfield JL Circulation; 2002 Oct; 106(17):2224-30. PubMed ID: 12390952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]