These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 15519294)
1. Selective liberation of NO from S-nitrosocysteine with potassium thiocyanate, as monitored by an amperometric sensor. Alberto PC; Marmottini F; Arienti G; Palombari R Arch Biochem Biophys; 2004 Dec; 432(1):37-40. PubMed ID: 15519294 [TBL] [Abstract][Full Text] [Related]
2. Effect of pH and metal ions on the decomposition rate of S-nitrosocysteine. Gu J; Lewis RS Ann Biomed Eng; 2007 Sep; 35(9):1554-60. PubMed ID: 17510805 [TBL] [Abstract][Full Text] [Related]
3. Role of S-nitrosothiol transport in the cardioprotective effects of S-nitrosocysteine in rat hearts. Hogg N; Broniowska KA; Novalija J; Kettenhofen NJ; Novalija E Free Radic Biol Med; 2007 Oct; 43(7):1086-94. PubMed ID: 17761304 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical assay of human haemoglobin S-nitrosylation by nitrosocysteine. Palmerini CP; Palombari R; Arienti G Amino Acids; 2003 Jul; 25(1):59-62. PubMed ID: 12836059 [TBL] [Abstract][Full Text] [Related]
5. Determination of S-nitrosohemoglobin using a solid-state amperometric sensor. Palmerini CA; Arienti G; Palombari R Nitric Oxide; 2000 Dec; 4(6):546-9. PubMed ID: 11139362 [TBL] [Abstract][Full Text] [Related]
6. Development of polyethylene glycol-conjugated poly-S-nitrosated serum albumin, a novel S-Nitrosothiol for prolonged delivery of nitric oxide in the blood circulation in vivo. Katsumi H; Nishikawa M; Yamashita F; Hashida M J Pharmacol Exp Ther; 2005 Sep; 314(3):1117-24. PubMed ID: 15901798 [TBL] [Abstract][Full Text] [Related]
7. Prevention of ischemia/reperfusion injury by hepatic targeting of nitric oxide in mice. Katsumi H; Nishikawa M; Yasui H; Yamashita F; Hashida M J Control Release; 2009 Nov; 140(1):12-7. PubMed ID: 19646492 [TBL] [Abstract][Full Text] [Related]
8. Nitroso group transfer in s-nitrosocysteine: evidence of a new decomposition pathway for nitrosothiols. Adam C; García-Río L; Leis JR; Ribeiro L J Org Chem; 2005 Aug; 70(16):6353-61. PubMed ID: 16050697 [TBL] [Abstract][Full Text] [Related]
9. Metal organic frameworks as nitric oxide catalysts. Harding JL; Reynolds MM J Am Chem Soc; 2012 Feb; 134(7):3330-3. PubMed ID: 22263610 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous catalytic generation of nitric oxide from S-nitrosothiols at the surface of polymer films doped with lipophilic copperII complex. Oh BK; Meyerhoff ME J Am Chem Soc; 2003 Aug; 125(32):9552-3. PubMed ID: 12903997 [TBL] [Abstract][Full Text] [Related]
11. Metalloprotein-dependent decomposition of S-nitrosothiols: studies on the stabilization and measurement of S-nitrosothiols in tissues. Mani AR; Ebrahimkhani MR; Ippolito S; Ollosson R; Moore KP Free Radic Biol Med; 2006 May; 40(9):1654-63. PubMed ID: 16632125 [TBL] [Abstract][Full Text] [Related]
12. S-nitrosothiol detection via amperometric nitric oxide sensor with surface modified hydrogel layer containing immobilized organoselenium catalyst. Cha W; Meyerhoff ME Langmuir; 2006 Dec; 22(25):10830-6. PubMed ID: 17129067 [TBL] [Abstract][Full Text] [Related]
13. Topical application of acidified nitrite to the nail renders it antifungal and causes nitrosation of cysteine groups in the nail plate. Finnen MJ; Hennessy A; McLean S; Bisset Y; Mitchell R; Megson IL; Weller R Br J Dermatol; 2007 Sep; 157(3):494-500. PubMed ID: 17627796 [TBL] [Abstract][Full Text] [Related]
14. Decomposition of S-nitrosocysteine via S- to N-transnitrosation. Peterson LA; Wagener T; Sies H; Stahl W Chem Res Toxicol; 2007 May; 20(5):721-3. PubMed ID: 17439249 [TBL] [Abstract][Full Text] [Related]
15. Tempol diverts peroxynitrite/carbon dioxide reactivity toward albumin and cells from protein-tyrosine nitration to protein-cysteine nitrosation. Fernandes DC; Medinas DB; Alves MJ; Augusto O Free Radic Biol Med; 2005 Jan; 38(2):189-200. PubMed ID: 15607902 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic studies of S-nitrosothiol formation by NO*/O2 and by NO*/methemoglobin. Herold S; Röck G Arch Biochem Biophys; 2005 Apr; 436(2):386-96. PubMed ID: 15797251 [TBL] [Abstract][Full Text] [Related]
17. Evidence that intrinsic iron but not intrinsic copper determines S-nitrosocysteine decomposition in buffer solution. Vanin AF; Muller B; Alencar JL; Lobysheva II; Nepveu F; Stoclet JC Nitric Oxide; 2002 Nov; 7(3):194-209. PubMed ID: 12381416 [TBL] [Abstract][Full Text] [Related]
18. The cytosolic calcium concentration is affected by S-nitrosocysteine in human lymphomonocytes. Palmerini CA; Mazzoni M; Saccardi C; Arienti G J Biochem Mol Toxicol; 2008 Feb; 22(1):35-40. PubMed ID: 18273907 [TBL] [Abstract][Full Text] [Related]
19. Gas-phase fragmentation of long-lived cysteine radical cations formed via NO loss from protonated S-nitrosocysteine. Ryzhov V; Lam AK; O'Hair RA J Am Soc Mass Spectrom; 2009 Jun; 20(6):985-95. PubMed ID: 19217308 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and evaluation of NO-release from symmetrically substituted furoxans. Nirode WF; Luis JM; Wicker JF; Wachter NM Bioorg Med Chem Lett; 2006 Apr; 16(8):2299-301. PubMed ID: 16446086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]