These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 15519307)
21. Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association. Lee J; Im W J Am Chem Soc; 2008 May; 130(20):6456-62. PubMed ID: 18422318 [TBL] [Abstract][Full Text] [Related]
23. riDOM, a cell penetrating peptide. Interaction with phospholipid bilayers. Québatte G; Kitas E; Seelig J Biochim Biophys Acta; 2014 Mar; 1838(3):968-77. PubMed ID: 24184424 [TBL] [Abstract][Full Text] [Related]
24. Binding of substance P agonists to lipid membranes and to the neurokinin-1 receptor. Seelig A; Alt T; Lotz S; Hölzemann G Biochemistry; 1996 Apr; 35(14):4365-74. PubMed ID: 8605185 [TBL] [Abstract][Full Text] [Related]
25. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻. Beck A; Li-Blatter X; Seelig A; Seelig J J Phys Chem B; 2010 Dec; 114(48):15862-71. PubMed ID: 21067191 [TBL] [Abstract][Full Text] [Related]
26. How lipids affect the activities of integral membrane proteins. Lee AG Biochim Biophys Acta; 2004 Nov; 1666(1-2):62-87. PubMed ID: 15519309 [TBL] [Abstract][Full Text] [Related]
27. Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. Ben-Shaul A; Ben-Tal N; Honig B Biophys J; 1996 Jul; 71(1):130-7. PubMed ID: 8804596 [TBL] [Abstract][Full Text] [Related]
28. How lipids and proteins interact in a membrane: a molecular approach. Lee AG Mol Biosyst; 2005 Sep; 1(3):203-12. PubMed ID: 16880984 [TBL] [Abstract][Full Text] [Related]
29. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes. Tan A; Ziegler A; Steinbauer B; Seelig J Biophys J; 2002 Sep; 83(3):1547-56. PubMed ID: 12202379 [TBL] [Abstract][Full Text] [Related]
30. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Wenk MR; Alt T; Seelig A; Seelig J Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676 [TBL] [Abstract][Full Text] [Related]
31. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
32. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [TBL] [Abstract][Full Text] [Related]
33. Thermodynamic and computational studies on the binding of p53-derived peptides and peptidomimetic inhibitors to HDM2. Grässlin A; Amoreira C; Baldridge KK; Robinson JA Chembiochem; 2009 May; 10(8):1360-8. PubMed ID: 19408261 [TBL] [Abstract][Full Text] [Related]
34. Binding of peptides corresponding to the carboxy-terminal region of human-β-defensins-1-3 with model membranes investigated by isothermal titration calorimetry. Krishnakumari V; Nagaraj R Biochim Biophys Acta; 2012 May; 1818(5):1386-94. PubMed ID: 22386945 [TBL] [Abstract][Full Text] [Related]
35. Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria. Ringstad L; Kacprzyk L; Schmidtchen A; Malmsten M Biochim Biophys Acta; 2007 Mar; 1768(3):715-27. PubMed ID: 17207456 [TBL] [Abstract][Full Text] [Related]
36. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. Ladokhin AS; White SH J Mol Biol; 2001 Jun; 309(3):543-52. PubMed ID: 11397078 [TBL] [Abstract][Full Text] [Related]
37. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity. Finger S; Kerth A; Dathe M; Blume A Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060 [TBL] [Abstract][Full Text] [Related]
38. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
39. Adaptation of a membrane-active peptide to heterogeneous environment. I. Structural plasticity of the peptide. Polyansky AA; Volynsky PE; Arseniev AS; Efremov RG J Phys Chem B; 2009 Jan; 113(4):1107-19. PubMed ID: 19125640 [TBL] [Abstract][Full Text] [Related]