These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 15519307)
41. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence. Soekarjo M; Eisenhawer M; Kuhn A; Vogel H Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578 [TBL] [Abstract][Full Text] [Related]
42. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Gonçalves E; Kitas E; Seelig J Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783 [TBL] [Abstract][Full Text] [Related]
43. Length dependence of the coil <--> beta-sheet transition in a membrane environment. Meier M; Seelig J J Am Chem Soc; 2008 Jan; 130(3):1017-24. PubMed ID: 18163629 [TBL] [Abstract][Full Text] [Related]
44. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988 [TBL] [Abstract][Full Text] [Related]
45. Interaction of a mitochondrial presequence with lipid membranes: role of helix formation for membrane binding and perturbation. Wieprecht T; Apostolov O; Beyermann M; Seelig J Biochemistry; 2000 Dec; 39(50):15297-305. PubMed ID: 11112515 [TBL] [Abstract][Full Text] [Related]
46. Interaction of poly(L-arginine) with negatively charged DPPG membranes: calorimetric and monolayer studies. Schwieger C; Blume A Biomacromolecules; 2009 Aug; 10(8):2152-61. PubMed ID: 19603784 [TBL] [Abstract][Full Text] [Related]
47. Protein modulation of lipids, and vice-versa, in membranes. Marsh D Biochim Biophys Acta; 2008; 1778(7-8):1545-75. PubMed ID: 18294954 [TBL] [Abstract][Full Text] [Related]
48. Monitoring lipid membrane translocation of sodium dodecyl sulfate by isothermal titration calorimetry. Keller S; Heerklotz H; Blume A J Am Chem Soc; 2006 Feb; 128(4):1279-86. PubMed ID: 16433546 [TBL] [Abstract][Full Text] [Related]
49. Anionic phospholipids modulate peptide insertion into membranes. Liu LP; Deber CM Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930 [TBL] [Abstract][Full Text] [Related]
50. Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning. Caputo GA; London E Biochemistry; 2004 Jul; 43(27):8794-806. PubMed ID: 15236588 [TBL] [Abstract][Full Text] [Related]
51. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
52. The binding of an amphipathic peptide to lipid monolayers at the air/water interface is modulated by the lipid headgroup structure. Arouri A; Kerth A; Dathe M; Blume A Langmuir; 2011 Mar; 27(6):2811-8. PubMed ID: 21319763 [TBL] [Abstract][Full Text] [Related]
53. Binding of basic peptides to acidic lipids in membranes: effects of inserting alanine(s) between the basic residues. Mosior M; McLaughlin S Biochemistry; 1992 Feb; 31(6):1767-73. PubMed ID: 1737030 [TBL] [Abstract][Full Text] [Related]
55. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry. Cong X; Liu Y; Liu W; Liang X; Russell DH; Laganowsky A J Am Chem Soc; 2016 Apr; 138(13):4346-9. PubMed ID: 27015007 [TBL] [Abstract][Full Text] [Related]
56. Structural and thermodynamic properties of water-membrane interphases: significance for peptide/membrane interactions. Disalvo EA; Martini MF; Bouchet AM; Hollmann A; Frías MA Adv Colloid Interface Sci; 2014 Sep; 211():17-33. PubMed ID: 25085854 [TBL] [Abstract][Full Text] [Related]
57. Hydrophobicity and sorption of chlorophenolates to lipid membranes. Smejtek P; Blochel A; Wang S Chemosphere; 1996 Jul; 33(1):177-201. PubMed ID: 8680829 [TBL] [Abstract][Full Text] [Related]
58. Specific protein-lipid interactions in membrane proteins. Hunte C Biochem Soc Trans; 2005 Nov; 33(Pt 5):938-42. PubMed ID: 16246015 [TBL] [Abstract][Full Text] [Related]
59. Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin. Kim J; Blackshear PJ; Johnson JD; McLaughlin S Biophys J; 1994 Jul; 67(1):227-37. PubMed ID: 7918991 [TBL] [Abstract][Full Text] [Related]
60. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Henriques ST; Castanho MA; Pattenden LK; Aguilar MI Biopolymers; 2010; 94(3):314-22. PubMed ID: 20049920 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]