BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 15519348)

  • 1. The effect of muscle loading on the simulation of bone remodelling in the proximal femur.
    Bitsakos C; Kerner J; Fisher I; Amis AA
    J Biomech; 2005 Jan; 38(1):133-9. PubMed ID: 15519348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain adaptive bone remodelling: influence of the implantation technique.
    Behrens BA; Bouguecha A; Nolte I; Meyer-Lindenberg A; Stukenborg-Colsman C; Pressel T
    Stud Health Technol Inform; 2008; 133():33-44. PubMed ID: 18376011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of periprosthetic bone remodelling after implantation of anatomic and straight stem prostheses in total hip arthroplasty.
    Grochola LF; Habermann B; Mastrodomenico N; Kurth A
    Arch Orthop Trauma Surg; 2008 Apr; 128(4):383-92. PubMed ID: 18038142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiologically based boundary conditions in finite element modelling.
    Speirs AD; Heller MO; Duda GN; Taylor WR
    J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone remodelling inside a cemented resurfaced femoral head.
    Gupta S; New AM; Taylor M
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):594-602. PubMed ID: 16542761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity intensity, assistive devices and joint replacement influence predicted remodelling in the proximal femur.
    Dickinson AS
    Biomech Model Mechanobiol; 2016 Feb; 15(1):181-94. PubMed ID: 26183472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. THA loading arising from increased femoral anteversion and offset may lead to critical cement stresses.
    Kleemann RU; Heller MO; Stoeckle U; Taylor WR; Duda GN
    J Orthop Res; 2003 Sep; 21(5):767-74. PubMed ID: 12919861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Numerical investigations of the strain adaptive bone remodelling in the periprosthetic canine femur].
    Behrens BA; Bouguecha A; Stukenborg-Colsman C; Wefstaedt P; Nolte I
    Berl Munch Tierarztl Wochenschr; 2009; 122(9-10):391-7. PubMed ID: 19863012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical and interfacial bone changes around a non-cemented hip implant: simulations using a combined strain/damage remodelling algorithm.
    Scannell PT; Prendergast PJ
    Med Eng Phys; 2009 May; 31(4):477-88. PubMed ID: 19188086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee.
    Stoppie N; Van Oosterwyck H; Jansen J; Wolke J; Wevers M; Naert I
    J Biomed Mater Res A; 2009 Sep; 90(3):792-803. PubMed ID: 18615463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity and loading influence the predicted bone remodeling around cemented hip replacements.
    Dickinson AS
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24337038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements.
    Bah MT; Nair PB; Browne M
    Med Eng Phys; 2009 Dec; 31(10):1235-43. PubMed ID: 19744873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of changes in stem positioning on femoral loading after THR using a short-stemmed hip implant.
    Speirs AD; Heller MO; Taylor WR; Duda GN; Perka C
    Clin Biomech (Bristol, Avon); 2007 May; 22(4):431-9. PubMed ID: 17275151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of physiological loading in total hip replacements.
    Ramos A; Fonseca F; Simões JA
    J Biomech Eng; 2006 Aug; 128(4):579-87. PubMed ID: 16813449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term study of bone remodelling after femoral stem: a comparison between dexa and finite element simulation.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech; 2007; 40(16):3615-25. PubMed ID: 17675042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Prediction of femoral remodeling after implantation of artifical femoral head].
    Gao Z; Zhao C; Yu Q; Wu D; Yu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Jun; 20(2):295-8. PubMed ID: 12856602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.