BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 15519348)

  • 21. Femoral strain changes after total hip arthroplasty--patient-specific finite element analyses 12 years after operation.
    Lengsfeld M; Burchard R; Günther D; Pressel T; Schmitt J; Leppek R; Griss P
    Med Eng Phys; 2005 Oct; 27(8):649-54. PubMed ID: 16139763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Bone remodeling numerical simulation on the basis of bone adaptive theory].
    Chen B; Zhao W; Sun Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):363-7. PubMed ID: 18610623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stemmed femoral knee prostheses: effects of prosthetic design and fixation on bone loss.
    van Lenthe GH; Willems MM; Verdonschot N; de Waal Malefijt MC; Huiskes R
    Acta Orthop Scand; 2002 Dec; 73(6):630-7. PubMed ID: 12553509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: a biomechanical model.
    Bellini CM; Galbusera F; Ceroni RG; Raimondi MT
    Med Eng Phys; 2007 Mar; 29(2):175-81. PubMed ID: 16569508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element analysis of a bone-implant system with the proximal femur nail.
    Helwig P; Faust G; Hindenlang U; Kröplin B; Eingartner C
    Technol Health Care; 2006; 14(4-5):411-9. PubMed ID: 17065762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Principles of determination and verification of muscle forces in the human musculoskeletal system: Muscle forces to minimise bending stress.
    Sverdlova NS; Witzel U
    J Biomech; 2010 Feb; 43(3):387-96. PubMed ID: 19880120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probabilistic finite element analysis of the uncemented hip replacement--effect of femur characteristics and implant design geometry.
    Dopico-González C; New AM; Browne M
    J Biomech; 2010 Feb; 43(3):512-20. PubMed ID: 19896129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of subject-specific musculoskeletal loading on the prediction of bone density distribution in the proximal femur.
    Vahdati A; Walscharts S; Jonkers I; Garcia-Aznar JM; Vander Sloten J; van Lenthe GH
    J Mech Behav Biomed Mater; 2014 Feb; 30():244-52. PubMed ID: 24342624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling.
    Kerner J; Huiskes R; van Lenthe GH; Weinans H; van Rietbergen B; Engh CA; Amis AA
    J Biomech; 1999 Jul; 32(7):695-703. PubMed ID: 10400357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FE stress analysis of the interface between the bone and an osseointegrated implant for amputees--implications to refine the rehabilitation program.
    Lee WC; Doocey JM; Brånemark R; Adam CJ; Evans JH; Pearcy MJ; Frossard LA
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1243-50. PubMed ID: 18809231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro.
    Kassi JP; Heller MO; Stoeckle U; Perka C; Duda GN
    J Biomech; 2005 May; 38(5):1143-54. PubMed ID: 15797595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dynamic natures of implant loading.
    Wang RF; Kang B; Lang LA; Razzoog ME
    J Prosthet Dent; 2009 Jun; 101(6):359-71. PubMed ID: 19463663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational study of Wolff's law with trabecular architecture in the human proximal femur using topology optimization.
    Jang IG; Kim IY
    J Biomech; 2008 Aug; 41(11):2353-61. PubMed ID: 18667206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis.
    Ding X; Zhu XH; Liao SH; Zhang XH; Chen H
    J Prosthodont; 2009 Jul; 18(5):393-402. PubMed ID: 19374710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone remodelling of a proximal femur with the thrust plate prosthesis: an in vitro case.
    Taylor WR; Ploeg H; Hertig D; Warner MD; Clift SE
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):131-7. PubMed ID: 15512756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Theoretical analysis of changes in femoral stresses after total hip arthroplasty].
    Yan S; Wu H; Yu S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):530-4. PubMed ID: 16856384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study.
    Rémond A; Naïli S; Lemaire T
    Biomech Model Mechanobiol; 2008 Dec; 7(6):487-95. PubMed ID: 17990014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.