These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 15519466)

  • 41. Use of 210Pb and 137Cs to simultaneously constrain ages and sources of post-dam sediments in the Cordeaux reservoir, Sydney, Australia.
    Simms AD; Woodroffe C; Jones BG; Heijnis H; Mann RA; Harrison J
    J Environ Radioact; 2008 Jul; 99(7):1111-20. PubMed ID: 18289748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distribution of artificial radionuclides in deep sediments of the Mediterranean Sea.
    Garcia-Orellana J; Pates JM; Masqué P; Bruach JM; Sanchez-Cabeza JA
    Sci Total Environ; 2009 Jan; 407(2):887-98. PubMed ID: 18986686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology.
    Alvarez-Iglesias P; Quintana B; Rubio B; Pérez-Arlucea M
    J Environ Radioact; 2007; 98(3):229-50. PubMed ID: 17611005
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modelling multiple dispersion of radionuclides through the environment.
    Monte L
    J Environ Radioact; 2010 Feb; 101(2):134-9. PubMed ID: 19864050
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Levels of 137Cs in muddy sediments on the seabed in the Bay of Cadiz (Spain). Part II. Model of vertical migration of (137)Cs.
    Ligero RA; Barrera M; Casas-Ruiz M
    J Environ Radioact; 2005; 80(1):87-103. PubMed ID: 15653189
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Caesium-137 and strontium-90 temporal series in the Tagus River: experimental results and a modelling study.
    Miró C; Baeza A; Madruga MJ; Periañez R
    J Environ Radioact; 2012 Nov; 113():21-31. PubMed ID: 22613729
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Radioactive contamination of bottom sediments in the upper reaches of the Techa river: analysis of the data obtained in 1950 and 1951.
    Mokrov YG
    Radiat Environ Biophys; 2003 Oct; 42(3):155-68. PubMed ID: 14579132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Source and dispersal of suspended sediment in the macro-tidal Gulf of Kachchh.
    Ramaswamy V; Nath BN; Vethamony P; Illangovan D
    Mar Pollut Bull; 2007 Jun; 54(6):708-19. PubMed ID: 17376489
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia.
    Bainbridge ZT; Wolanski E; Alvarez-Romero JG; Lewis SE; Brodie JE
    Mar Pollut Bull; 2012; 65(4-9):236-48. PubMed ID: 22364951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling the transport of radionuclides from land to water.
    Håkanson L
    J Environ Radioact; 2004; 73(3):267-87. PubMed ID: 15050360
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distribution of 137Cs, 238Pu and 239+240 Pu in sediments of the southeastern Brazilian shelf-SW Atlantic margin.
    Figueira RC; Tessler MG; de Mahiques MM; Cunha II
    Sci Total Environ; 2006 Mar; 357(1-3):146-59. PubMed ID: 16054672
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D modelling of transport, deposition and resuspension of highway deposited sediments in wet detention ponds.
    Bentzen TR
    Water Sci Technol; 2010; 62(3):736-42. PubMed ID: 20706022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probabilistic distribution coefficients (K(d)s) in freshwater for radioisotopes of Ag, Am, Ba, Be, Ce, Co, Cs, I, Mn, Pu, Ra, Ru, Sb, Sr and Th: implications for uncertainty analysis of models simulating the transport of radionuclides in rivers.
    Ciffroy P; Durrieu G; Garnier JM
    J Environ Radioact; 2009 Sep; 100(9):785-94. PubMed ID: 19114288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Local scale marine modelling of Fukushima releases. Assessment of water and sediment contamination and sensitivity to water circulation description.
    Periáñez R; Suh KS; Min BI
    Mar Pollut Bull; 2012 Nov; 64(11):2333-9. PubMed ID: 23021937
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measuring and modelling temporal trends of 226Ra in waters of a Spanish estuary affected by the phosphate industry.
    Periáñez R
    Mar Environ Res; 2005 Jul; 60(1):35-49. PubMed ID: 15649526
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Performance assessment model development and parameter acquisition for analysis of the transport of natural radionuclides in a Mediterranean watershed.
    Agüero A
    Sci Total Environ; 2005 Sep; 348(1-3):32-50. PubMed ID: 16162312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Considerations on the influence of extreme events on the phosphorus transport from river catchments to the sea.
    Zessner M; Postolache C; Clement A; Kovacs A; Strauss P
    Water Sci Technol; 2005; 51(11):193-204. PubMed ID: 16114633
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new general mechanistic river model for radionuclides from single pulse fallouts which can be run by readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 80(3):357-82. PubMed ID: 15725508
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating the date corresponding to the horizon of the first detection of 137Cs and 239+240Pu in sediment cores.
    Leslie C; Hancock GJ
    J Environ Radioact; 2008 Mar; 99(3):483-90. PubMed ID: 17964699
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The importance of recording physical and chemical variables simultaneously with remote radiological surveillance of aquatic systems: a perspective for environmental modelling.
    Abril JM; El-Mrabet R; Barros H
    J Environ Radioact; 2004; 72(1-2):145-52. PubMed ID: 15162866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.