These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15519589)

  • 1. A repeated sampling bone chamber methodology for the evaluation of tissue differentiation and bone adaptation around titanium implants under controlled mechanical conditions.
    Duyck J; Cooman MD; Puers R; Van Oosterwyck H; Sloten JV; Naert I
    J Biomech; 2004 Dec; 37(12):1819-22. PubMed ID: 15519589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit.
    Vandamme K; Naert I; Geris L; Sloten JV; Puers R; Duyck J
    Clin Oral Implants Res; 2007 Aug; 18(4):471-80. PubMed ID: 17517061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of micro-motion on the tissue differentiation around immediately loaded cylindrical turned titanium implants.
    Duyck J; Vandamme K; Geris L; Van Oosterwyck H; De Cooman M; Vandersloten J; Puers R; Naert I
    Arch Oral Biol; 2006 Jan; 51(1):1-9. PubMed ID: 15922992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The repeated sampling bone chamber: a new permanent titanium implant to study bone grafts in the goat.
    Lamerigts N; Aspenberg P; Buma P; Versleyen D; Slooff TJ
    Lab Anim Sci; 1997 Aug; 47(4):401-6. PubMed ID: 9306314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber.
    Geris L; Andreykiv A; Van Oosterwyck H; Sloten JV; van Keulen F; Duyck J; Naert I
    J Biomech; 2004 May; 37(5):763-9. PubMed ID: 15047006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Duyck J; Van Oosterwyck H
    J Biomech; 2008; 41(1):145-54. PubMed ID: 17706229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peri-implant osteogenesis in health and osteoporosis.
    Marco F; Milena F; Gianluca G; Vittoria O
    Micron; 2005; 36(7-8):630-44. PubMed ID: 16182543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical loading affects angiogenesis and osteogenesis in an in vivo bone chamber: a modeling study.
    Geris L; Vandamme K; Naert I; Vander Sloten J; Van Oosterwyck H; Duyck J
    Tissue Eng Part A; 2010 Nov; 16(11):3353-61. PubMed ID: 20528674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New formation of periodontal tissues around titanium implants in a novel dentin chamber model.
    Parlar A; Bosshardt DD; Unsal B; Cetiner D; Haytaç C; Lang NP
    Clin Oral Implants Res; 2005 Jun; 16(3):259-67. PubMed ID: 15877745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of micro-motion on the tissue response around immediately loaded roughened titanium implants in the rabbit.
    Vandamme K; Naert I; Geris L; Vander Sloten J; Puers R; Duyck J
    Eur J Oral Sci; 2007 Feb; 115(1):21-9. PubMed ID: 17305713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue response to percutaneous implants in rabbits.
    Jansen JA; van der Waerden JP; van der Lubbe HB; de Groot K
    J Biomed Mater Res; 1990 Mar; 24(3):295-307. PubMed ID: 2318897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Craniofacial osseointegrated implant-induced strain distribution: a numerical study.
    del Valle V; Faulkner G; Wolfaardt J
    Int J Oral Maxillofac Implants; 1997; 12(2):200-10. PubMed ID: 9109270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved osseointegration of PTFEP-coated titanium implants.
    Zeifang F; Grunze M; Delling G; Lorenz H; Heisel C; Tosounidis G; Sabo D; Simank HG; Holstein JH
    Med Sci Monit; 2008 Feb; 14(2):BR35-40. PubMed ID: 18227757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of controlled immediate loading and implant design on peri-implant bone formation.
    Vandamme K; Naert I; Geris L; Vander Sloten J; Puers R; Duyck J
    J Clin Periodontol; 2007 Feb; 34(2):172-81. PubMed ID: 17309592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of hyperbaric oxygenation on bone-titanium implant interface strength with and without preceding irradiation.
    Johnsson K; Hansson A; Granström G; Jacobsson M; Turesson I
    Int J Oral Maxillofac Implants; 1993; 8(4):415-9. PubMed ID: 8270310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The zirconia implant-bone interface: a preliminary histologic evaluation in rabbits.
    Hoffmann O; Angelov N; Gallez F; Jung RE; Weber FE
    Int J Oral Maxillofac Implants; 2008; 23(4):691-5. PubMed ID: 18807566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage induction by controlled mechanical stimulation in vivo.
    Tägil M; Aspenberg P
    J Orthop Res; 1999 Mar; 17(2):200-4. PubMed ID: 10221836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histology and stability study of cortical bone graft influence on titanium implants.
    De Riu G; De Riu N; Spano G; Pizzigallo A; Petrone G; Tullio A
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2007 Apr; 103(4):e1-7. PubMed ID: 17275363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of low level laser irradiation on implant-tissue interaction. In vivo and in vitro studies.
    Khadra M
    Swed Dent J Suppl; 2005; (172):1-63. PubMed ID: 15906852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic materials stimulating bone formation.
    Kokubo T
    Med J Malaysia; 2004 May; 59 Suppl B():91-2. PubMed ID: 15468833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.