BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15519715)

  • 1. Aquatic microcosm assessment of the effects of tylosin on Lemna gibba and Myriophyllum spicatum.
    Brain RA; Bestari KJ; Sanderson H; Hanson ML; Wilson CJ; Johnson DJ; Sibley PK; Solomon KR
    Environ Pollut; 2005 Feb; 133(3):389-401. PubMed ID: 15519715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum.
    Brain RA; Johnson DJ; Richards SM; Hanson ML; Sanderson H; Lam MW; Young C; Mabury SA; Sibley PK; Solomon KR
    Aquat Toxicol; 2004 Oct; 70(1):23-40. PubMed ID: 15451605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms.
    Brain RA; Wilson CJ; Johnson DJ; Sanderson H; Bestari KJ; Hanson ML; Sibley PK; Solomon KR
    Environ Pollut; 2005 Dec; 138(3):425-42. PubMed ID: 15996801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity.
    Hanson ML; Solomon KR
    Environ Pollut; 2004 Aug; 130(3):371-83. PubMed ID: 15182970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monensin is not toxic to aquatic macrophytes at environmentally relevant concentrations.
    McGregor EB; Solomon KR; Hanson ML
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):541-51. PubMed ID: 17657449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic ecological hazard assessment: evaluating pharmaceutical effects on aquatic higher plants as an example.
    Brain RA; Sanderson H; Sibley PK; Solomon KR
    Ecotoxicol Environ Saf; 2006 Jun; 64(2):128-35. PubMed ID: 16225919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haloacetic acids in the aquatic environment. Part II: ecological risk assessment.
    Hanson ML; Solomon KR
    Environ Pollut; 2004 Aug; 130(3):385-401. PubMed ID: 15182971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcosm evaluation of the fate, toxicity, and risk to aquatic macrophytes from perfluorooctanoic acid (PFOA).
    Hanson ML; Small J; Sibley PK; Boudreau TM; Brain RA; Mabury SA; Solomon KR
    Arch Environ Contam Toxicol; 2005 Oct; 49(3):307-16. PubMed ID: 16075361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Ellis DA; Mabury SA; Muir DC; Solomon KR
    Aquat Toxicol; 2002 Dec; 61(3-4):251-73. PubMed ID: 12359395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytotoxic effects of cyanobacteria extract on Lemna minor and Myriophyllum spicatum phyto-tolerance and superoxide dismutase activity.
    Yi D; Yijun Z; Xue B; Zhihui F; Kai C
    Environ Toxicol; 2009 Jun; 24(3):304-8. PubMed ID: 18623078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community.
    Wendt-Rasch L; Van den Brink PJ; Crum SJ; Woin P
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):383-98. PubMed ID: 15041261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorodifluoroacetic acid fate and toxicity to the macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms.
    Hanson ML; Sibley PK; Mabury SA; Muir DC; Solomon KR
    Environ Toxicol Chem; 2001 Dec; 20(12):2758-67. PubMed ID: 11764159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field level evaluation and risk assessment of the toxicity of dichloroacetic acid to the aquatic macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum.
    Hanson ML; Sibley PK; Mabury SA; Muir DC; Solomon KR
    Ecotoxicol Environ Saf; 2003 May; 55(1):46-63. PubMed ID: 12706393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.
    Megateli S; Semsari S; Couderchet M
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1774-80. PubMed ID: 19505721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the use of the water milfoil (Myriophyllum spicatum L.) in laboratory toxicity assays.
    Sánchez D; Graça MA; Canhoto J
    Bull Environ Contam Toxicol; 2007 Jun; 78(6):421-6. PubMed ID: 17492386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of planting system design on the toxicological sensitivity of Myriophyllum spicatum and Elodea canadensis to atrazine.
    McGregor EB; Solomon KR; Hanson ML
    Chemosphere; 2008 Sep; 73(3):249-60. PubMed ID: 18706671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. at different exposure levels and assessment end-points.
    Sobrero MC; Rimoldi F; Ronco AE
    Bull Environ Contam Toxicol; 2007 Nov; 79(5):537-43. PubMed ID: 17940715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil.
    De Liguoro M; Cibin V; Capolongo F; Halling-Sørensen B; Montesissa C
    Chemosphere; 2003 Jul; 52(1):203-12. PubMed ID: 12729703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does intraspecific variability matter in ecological risk assessment? Investigation of genotypic variations in three macrophyte species exposed to copper.
    Roubeau Dumont E; Larue C; Lorber S; Gryta H; Billoir E; Gross EM; Elger A
    Aquat Toxicol; 2019 Jun; 211():29-37. PubMed ID: 30913512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a kinetic model for the removal of zinc using the aquatic macrophyte, Lemna gibba L.
    Khellaf N; Zerdaoui M
    Water Sci Technol; 2012; 66(5):953-7. PubMed ID: 22797221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.