These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 15519722)
1. Quantifying the role of forest soil and bedrock in the acid neutralization of surface water in steep hillslopes. Asano Y; Uchida T Environ Pollut; 2005 Feb; 133(3):467-80. PubMed ID: 15519722 [TBL] [Abstract][Full Text] [Related]
2. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Park JH; Duan L; Kim B; Mitchell MJ; Shibata H Environ Int; 2010 Feb; 36(2):212-25. PubMed ID: 19926135 [TBL] [Abstract][Full Text] [Related]
3. Deacidification effect of the litter layer on forest soil during snowmelt runoff--laboratory experiment and its basic formularization for simulation modeling. Kikuchi R Chemosphere; 2004 Feb; 54(8):1163-9. PubMed ID: 14664845 [TBL] [Abstract][Full Text] [Related]
4. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetín, Czech Republic. Oulehle F; Hofmeister J; Cudlín P; Hruska J Sci Total Environ; 2006 Nov; 370(2-3):532-44. PubMed ID: 16935320 [TBL] [Abstract][Full Text] [Related]
5. The dynamics of exchangeable cations in the environment of soils at Kampinoski National Park. Czepinska-Kaminska D; Konecka-Betley K; Janowska E Chemosphere; 2003 Jul; 52(3):581-4. PubMed ID: 12738295 [TBL] [Abstract][Full Text] [Related]
6. Decreased DOC concentrations in soil water in forested areas in southern Sweden during 1987-2008. Löfgren S; Zetterberg T Sci Total Environ; 2011 Apr; 409(10):1916-26. PubMed ID: 21377191 [TBL] [Abstract][Full Text] [Related]
7. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Rose KL; Graham RC; Parker DR Oecologia; 2003 Jan; 134(1):46-54. PubMed ID: 12647178 [TBL] [Abstract][Full Text] [Related]
8. Potential acidifying capacity of deposition experiences from regions with high NH4+ and dry deposition in China. Vogt RD; Seip HM; Larssen T; Zhao D; Xiang R; Xiao J; Luo J; Zhao Y Sci Total Environ; 2006 Aug; 367(1):394-404. PubMed ID: 16515804 [TBL] [Abstract][Full Text] [Related]
9. Predicting acidification recovery at the Hubbard Brook Experimental Forest, New Hampshire: evaluation of four models. Tominaga K; Aherne J; Watmough SA; Alveteg M; Cosby BJ; Driscoll CT; Posch M; Pourmokhtarian A Environ Sci Technol; 2010 Dec; 44(23):9003-9. PubMed ID: 21028800 [TBL] [Abstract][Full Text] [Related]
10. The effect of broadleaf woodland on aluminium speciation in stream water in an acid-sensitive area in the UK. Ryan JL; Lynam P; Heal KV; Palmer SM Sci Total Environ; 2012 Nov; 439():321-31. PubMed ID: 23085669 [TBL] [Abstract][Full Text] [Related]
11. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis. Chapman PJ; Clark JM; Reynolds B; Adamson JK Environ Pollut; 2008 Jan; 151(1):110-20. PubMed ID: 17478019 [TBL] [Abstract][Full Text] [Related]
12. Aluminium mobilization from acidic forest soils in Leigongshan area, Southwestern China: Laboratory and field study. Guo J; Vogt RD; Zhang X; Zhang Y; Seip HM; Xiao J; Tang H Arch Environ Contam Toxicol; 2006 Oct; 51(3):321-8. PubMed ID: 16763762 [TBL] [Abstract][Full Text] [Related]
13. Leaching from organic matter-rich soils by rain of different qualities: I. Concentrations. Strand LT; Abrahamsen G; Stuanes AO J Environ Qual; 2002; 31(2):547-56. PubMed ID: 11931446 [TBL] [Abstract][Full Text] [Related]
14. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the "SAFE" model. Małek S; Martinson L; Sverdrup H Environ Pollut; 2005 Oct; 137(3):568-73. PubMed ID: 16005767 [TBL] [Abstract][Full Text] [Related]
15. Streamwater chemistry and flow dynamics along vegetation-soil gradient in a subalpine Abies fabri forest watershed, China. Shan BQ; Wang WD; Yin CQ J Environ Sci (China); 2004; 16(5):722-9. PubMed ID: 15559799 [TBL] [Abstract][Full Text] [Related]
16. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Markewitz D; Davidson EA; Figueiredo Rd ; Victoria RL; Krusche AV Nature; 2001 Apr; 410(6830):802-5. PubMed ID: 11298445 [TBL] [Abstract][Full Text] [Related]
17. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand. Craw D J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268 [TBL] [Abstract][Full Text] [Related]
18. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network. Evans CD; Cooper DM; Juggins S; Jenkins A; Norris D Sci Total Environ; 2006 Jul; 365(1-3):167-85. PubMed ID: 16580046 [TBL] [Abstract][Full Text] [Related]
19. Fine roots in stands of Fagus sylvatica and Picea abies along a gradient of soil acidification. Braun S; Cantaluppi L; Flückiger W Environ Pollut; 2005 Oct; 137(3):574-9. PubMed ID: 15964116 [TBL] [Abstract][Full Text] [Related]
20. Acidic deposition, plant pests, and the fate of forest ecosystems. Gragnani A; Gatto M; Rinaldi S Theor Popul Biol; 1998 Dec; 54(3):257-69. PubMed ID: 9878604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]