BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 15520379)

  • 1. An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans.
    Buddha MR; Keery KM; Crane BR
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15881-6. PubMed ID: 15520379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and activity of an aminoacyl-tRNA synthetase that charges tRNA with nitro-tryptophan.
    Buddha MR; Crane BR
    Nat Struct Mol Biol; 2005 Mar; 12(3):274-5. PubMed ID: 15723076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis.
    Buddha MR; Crane BR
    J Biol Chem; 2005 Sep; 280(36):31965-73. PubMed ID: 15998643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regioselective nitration of tryptophan by a complex between bacterial nitric-oxide synthase and tryptophanyl-tRNA synthetase.
    Buddha MR; Tao T; Parry RJ; Crane BR
    J Biol Chem; 2004 Nov; 279(48):49567-70. PubMed ID: 15466862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of nitric oxide by the NOS-like protein from deinococcus radiodurans: a direct role for tetrahydrofolate.
    Reece SY; Woodward JJ; Marletta MA
    Biochemistry; 2009 Jun; 48(23):5483-91. PubMed ID: 19388666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase.
    Jia J; Xu F; Chen X; Chen L; Jin Y; Wang DT
    Biochem J; 2002 Aug; 365(Pt 3):749-56. PubMed ID: 11966471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations.
    Retailleau P; Huang X; Yin Y; Hu M; Weinreb V; Vachette P; Vonrhein C; Bricogne G; Roversi P; Ilyin V; Carter CW
    J Mol Biol; 2003 Jan; 325(1):39-63. PubMed ID: 12473451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase.
    Jorgensen R; Søgaard TM; Rossing AB; Martensen PM; Justesen J
    J Biol Chem; 2000 Jun; 275(22):16820-6. PubMed ID: 10828066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans.
    Adak S; Bilwes AM; Panda K; Hosfield D; Aulak KS; McDonald JF; Tainer JA; Getzoff ED; Crane BR; Stuehr DJ
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):107-12. PubMed ID: 11756668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-level expression and single-step purification of human tryptophanyl-tRNA synthetase.
    Xu F; Jia J; Jin Y; Wang DT
    Protein Expr Purif; 2001 Nov; 23(2):296-300. PubMed ID: 11676605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells.
    Miyanokoshi M; Yokosawa T; Wakasugi K
    J Biol Chem; 2018 Jun; 293(22):8428-8438. PubMed ID: 29666190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of lysine-195 in the KMSKS sequence of E. coli tryptophanyl-tRNA synthetase.
    Chan KW; Koeppe RE
    FEBS Lett; 1995 Apr; 363(1-2):33-6. PubMed ID: 7729548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan-Starved Human Cells Overexpressing Tryptophanyl-tRNA Synthetase Enhance High-Affinity Tryptophan Uptake via Enzymatic Production of Tryptophanyl-AMP.
    Yokosawa T; Wakasugi K
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei.
    Charrière F; Helgadóttir S; Horn EK; Söll D; Schneider A
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6847-52. PubMed ID: 16636268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian tryptophanyl-tRNA synthetases.
    Kisselev LL
    Biochimie; 1993; 75(12):1027-39. PubMed ID: 7515282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.
    Merritt EA; Arakaki TL; Gillespie R; Napuli AJ; Kim JE; Buckner FS; Van Voorhis WC; Verlinde CL; Fan E; Zucker F; Hol WG
    Mol Biochem Parasitol; 2011 May; 177(1):20-8. PubMed ID: 21255615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An exposed cysteine residue of human angiostatic mini tryptophanyl-tRNA synthetase.
    Wakasugi K
    Biochemistry; 2010 Apr; 49(14):3156-60. PubMed ID: 20225827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.