These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 15520379)
21. Recognition by tryptophanyl-tRNA synthetases of discriminator base on tRNATrp from three biological domains. Guo Q; Gong Q; Tong KL; Vestergaard B; Costa A; Desgres J; Wong M; Grosjean H; Zhu G; Wong JT; Xue H J Biol Chem; 2002 Apr; 277(16):14343-9. PubMed ID: 11834741 [TBL] [Abstract][Full Text] [Related]
22. Species-specific differences in the operational RNA code for aminoacylation of tRNA(Trp). Xu F; Chen X; Xin L; Chen L; Jin Y; Wang D Nucleic Acids Res; 2001 Oct; 29(20):4125-33. PubMed ID: 11600701 [TBL] [Abstract][Full Text] [Related]
23. Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity. Yu Y; Liu Y; Shen N; Xu X; Xu F; Jia J; Jin Y; Arnold E; Ding J J Biol Chem; 2004 Feb; 279(9):8378-88. PubMed ID: 14660560 [TBL] [Abstract][Full Text] [Related]
24. P1,P3-bis(5'-adenosyl)triphosphate (Ap3A) as a substrate and a product of mammalian tryptophanyl-tRNA synthetase. Merkulova T; Kovaleva G; Kisselev L FEBS Lett; 1994 Aug; 350(2-3):287-90. PubMed ID: 8070580 [TBL] [Abstract][Full Text] [Related]
25. Three G.C base pairs required for the efficient aminoacylation of tRNATrp by tryptophanyl-tRNA synthetase from Bacillus subtilis. Xu F; Jiang G; Li W; He X; Jin Y; Wang D Biochemistry; 2002 Jun; 41(25):8087-92. PubMed ID: 12069601 [TBL] [Abstract][Full Text] [Related]
26. Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. Ibba M; Sever S; Praetorius-Ibba M; Söll D Nucleic Acids Res; 1999 Sep; 27(18):3631-7. PubMed ID: 10471730 [TBL] [Abstract][Full Text] [Related]
28. High-level expression and single-step purification of human tryptophanyl-tRNA synthetase. Xu F; Jia J; Jin Y; Wang DT Protein Expr Purif; 2001 Nov; 23(2):296-300. PubMed ID: 11676605 [TBL] [Abstract][Full Text] [Related]
29. Role of the TIGN sequence in E. coli tryptophanyl-tRNA synthetase. Chan KW; Koeppe RE Biochim Biophys Acta; 1994 Apr; 1205(2):223-9. PubMed ID: 8155701 [TBL] [Abstract][Full Text] [Related]
30. Ancient adaptation of the active site of tryptophanyl-tRNA synthetase for tryptophan binding. Praetorius-Ibba M; Stange-Thomann N; Kitabatake M; Ali K; Söll I; Carter CW; Ibba M; Söll D Biochemistry; 2000 Oct; 39(43):13136-43. PubMed ID: 11052665 [TBL] [Abstract][Full Text] [Related]
31. Species-specific differences in the regulation of the aminoacylation activity of mammalian tryptophanyl-tRNA synthetases. Wakasugi K FEBS Lett; 2010 Jan; 584(1):229-32. PubMed ID: 19941862 [TBL] [Abstract][Full Text] [Related]
32. Tryptophan Depletion Modulates Tryptophanyl-tRNA Synthetase-Mediated High-Affinity Tryptophan Uptake into Human Cells. Yokosawa T; Sato A; Wakasugi K Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33261077 [TBL] [Abstract][Full Text] [Related]
33. Tryptophanyl-tRNA synthetase from Bacillus subtilis. Characterization and role of hydrophobicity in substrate recognition. Xu ZJ; Love ML; Ma LY; Blum M; Bronskill PM; Bernstein J; Grey AA; Hofmann T; Camerman N; Wong JT J Biol Chem; 1989 Mar; 264(8):4304-11. PubMed ID: 2494170 [TBL] [Abstract][Full Text] [Related]
34. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Zhang Z; Alfonta L; Tian F; Bursulaya B; Uryu S; King DS; Schultz PG Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8882-7. PubMed ID: 15187228 [TBL] [Abstract][Full Text] [Related]
35. An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function. Xu X; Zhou H; Zhou Q; Hong F; Vo MN; Niu W; Wang Z; Xiong X; Nakamura K; Wakasugi K; Schimmel P; Yang XL RNA Biol; 2018; 15(4-5):649-658. PubMed ID: 28910573 [TBL] [Abstract][Full Text] [Related]
36. Oxidative stress-responsive intracellular regulation specific for the angiostatic form of human tryptophanyl-tRNA synthetase. Wakasugi K; Nakano T; Morishima I Biochemistry; 2005 Jan; 44(1):225-32. PubMed ID: 15628863 [TBL] [Abstract][Full Text] [Related]
37. Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution. Nakamoto T; Miyanokoshi M; Tanaka T; Wakasugi K Sci Rep; 2016 Apr; 6():24750. PubMed ID: 27094087 [TBL] [Abstract][Full Text] [Related]
38. Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity. Wakasugi K Biochemistry; 2007 Oct; 46(40):11291-8. PubMed ID: 17877375 [TBL] [Abstract][Full Text] [Related]
39. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms. Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894 [TBL] [Abstract][Full Text] [Related]
40. An exposed cysteine residue of human angiostatic mini tryptophanyl-tRNA synthetase. Wakasugi K Biochemistry; 2010 Apr; 49(14):3156-60. PubMed ID: 20225827 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]