BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15520468)

  • 1. CTD kinase I is involved in RNA polymerase I transcription.
    Bouchoux C; Hautbergue G; Grenetier S; Carles C; Riva M; Goguel V
    Nucleic Acids Res; 2004; 32(19):5851-60. PubMed ID: 15520468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CTD kinase I is required for the integrity of the rDNA tandem array.
    Grenetier S; Bouchoux C; Goguel V
    Nucleic Acids Res; 2006; 34(17):4996-5006. PubMed ID: 16984969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple roles of CTDK-I throughout the cell.
    Srivastava R; Duan R; Ahn SH
    Cell Mol Life Sci; 2019 Jul; 76(14):2789-2797. PubMed ID: 31037337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and activation mechanism of the yeast RNA Pol II CTD kinase CTDK-1 complex.
    Xie Y; Lord CL; Clarke BP; Ivey AL; Hill PS; McDonald WH; Wente SR; Ren Y
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33431688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of yeast carboxy-terminal domain kinase I (CTDK-I) in transcription elongation in vivo.
    Jona G; Wittschieben BO; Svejstrup JQ; Gileadi O
    Gene; 2001 Apr; 267(1):31-6. PubMed ID: 11311553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase II carboxyl-terminal domain phosphorylation.
    Patturajan M; Conrad NK; Bregman DB; Corden JL
    J Biol Chem; 1999 Sep; 274(39):27823-8. PubMed ID: 10488128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the yeast proteome.
    Phatnani HP; Jones JC; Greenleaf AL
    Biochemistry; 2004 Dec; 43(50):15702-19. PubMed ID: 15595826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold.
    Mühlbacher W; Mayer A; Sun M; Remmert M; Cheung AC; Niesser J; Soeding J; Cramer P
    Proteins; 2015 Oct; 83(10):1849-58. PubMed ID: 26219431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of RNA polymerase II carboxy terminal domain phosphorylation in DNA damage response.
    Jeong SJ; Kim HJ; Yang YJ; Seol JH; Jung BY; Han JW; Lee HW; Cho EJ
    J Microbiol; 2005 Dec; 43(6):516-22. PubMed ID: 16410768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Budding yeast CTDK-I is required for DNA damage-induced transcription.
    Ostapenko D; Solomon MJ
    Eukaryot Cell; 2003 Apr; 2(2):274-83. PubMed ID: 12684377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RNA polymerase II CTD kinase Ctk1 functions in translation elongation.
    Röther S; Strässer K
    Genes Dev; 2007 Jun; 21(11):1409-21. PubMed ID: 17545469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of the cyclin-dependent kinase CTDK-I requires the heterodimerization of two unstable subunits.
    Hautbergue G; Goguel V
    J Biol Chem; 2001 Mar; 276(11):8005-13. PubMed ID: 11118453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast screens identify the RNA polymerase II CTD and SPT5 as relevant targets of BRCA1 interaction.
    Bennett CB; Westmoreland TJ; Verrier CS; Blanchette CA; Sabin TL; Phatnani HP; Mishina YV; Huper G; Selim AL; Madison ER; Bailey DD; Falae AI; Galli A; Olson JA; Greenleaf AL; Marks JR
    PLoS One; 2008 Jan; 3(1):e1448. PubMed ID: 18197258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain.
    Cho EJ; Kobor MS; Kim M; Greenblatt J; Buratowski S
    Genes Dev; 2001 Dec; 15(24):3319-29. PubMed ID: 11751637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain RNA polymerase and nucleolar structure in perinatal asphyxia of the rat.
    Mosgoeller W; Kastner P; Fang-Kircher S; Kitzmueller E; Hoeger H; Seither P; Labudova O; Lubec G; Lubec B
    Exp Neurol; 2000 Jan; 161(1):174-82. PubMed ID: 10683283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of the carboxy-terminal repeat domain in RNA polymerase II by cyclin-dependent kinases is sufficient to inhibit transcription.
    Gebara MM; Sayre MH; Corden JL
    J Cell Biochem; 1997 Mar; 64(3):390-402. PubMed ID: 9057097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin Vb localises to nucleoli and associates with the RNA polymerase I transcription complex.
    Lindsay AJ; McCaffrey MW
    Cell Motil Cytoskeleton; 2009 Dec; 66(12):1057-72. PubMed ID: 19610025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression, purification and crystallization of the complex of RNA polymerase II carboxyl-terminal repeat domain kinase subunits CTK2-CTK3 from Saccharomyces cerevisiae.
    Zhu W; Hong T; Wang W; Wei Y; Mao X; Qiu X
    Protein Expr Purif; 2019 Feb; 154():112-117. PubMed ID: 30240633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and molecular reorganization of the nucleolar apparatus in maturing mouse oocytes.
    Zatsepina OV; Bouniol-Baly C; Amirand C; Debey P
    Dev Biol; 2000 Jul; 223(2):354-70. PubMed ID: 10882521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.