These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15521062)

  • 21. Flap opening dynamics in HIV-1 protease explored with a coarse-grained model.
    Tozzini V; Trylska J; Chang CE; McCammon JA
    J Struct Biol; 2007 Mar; 157(3):606-15. PubMed ID: 17029846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases.
    Sadiq SK; Wright D; Watson SJ; Zasada SJ; Stoica I; Coveney PV
    J Chem Inf Model; 2008 Sep; 48(9):1909-19. PubMed ID: 18710212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An insight into the opening path to semi-open conformation of HIV-1 protease by molecular dynamics simulation.
    Lu T; Chen Y; Li XY
    AIDS; 2010 May; 24(8):1121-5. PubMed ID: 20299960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Closing of the flaps of HIV-1 protease induced by substrate binding: a model of a flap closing mechanism in retroviral aspartic proteases.
    Tóth G; Borics A
    Biochemistry; 2006 May; 45(21):6606-14. PubMed ID: 16716071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CD4 binding partially locks the bridging sheet in gp120 but leaves the beta2/3 strands flexible.
    Pan Y; Ma B; Nussinov R
    J Mol Biol; 2005 Jul; 350(3):514-27. PubMed ID: 15946678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics of HIV-1 protease.
    Harte WE; Swaminathan S; Beveridge DL
    Proteins; 1992 Jul; 13(3):175-94. PubMed ID: 1603808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulations of HIV-1 protease monomer: Assembly of N-terminus and C-terminus into beta-sheet in water solution.
    Yan MC; Sha Y; Wang J; Xiong XQ; Ren JH; Cheng MS
    Proteins; 2008 Feb; 70(3):731-8. PubMed ID: 17729281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring experimental sources of multiple protein conformations in structure-based drug design.
    Damm KL; Carlson HA
    J Am Chem Soc; 2007 Jul; 129(26):8225-35. PubMed ID: 17555316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid method of molecular dynamics and harmonic dynamics for docking of flexible ligand to flexible receptor.
    Tatsumi R; Fukunishi Y; Nakamura H
    J Comput Chem; 2004 Dec; 25(16):1995-2005. PubMed ID: 15473011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on flexibility and binding affinity of Asp25 of HIV-1 protease mutants.
    Purohit R; Rajasekaran R; Sudandiradoss C; George Priya Doss C; Ramanathan K; Rao S
    Int J Biol Macromol; 2008 May; 42(4):386-91. PubMed ID: 18367244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trp42 rotamers report reduced flexibility when the inhibitor acetyl-pepstatin is bound to HIV-1 protease.
    Ullrich B; Laberge M; Tölgyesi F; Szeltner Z; Polgár L; Fidy J
    Protein Sci; 2000 Nov; 9(11):2232-45. PubMed ID: 11152134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox entropy of plastocyanin: developing a microscopic view of mesoscopic polar solvation.
    LeBard DN; Matyushov DV
    J Chem Phys; 2008 Apr; 128(15):155106. PubMed ID: 18433287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase.
    Frembgen-Kesner T; Elcock AH
    J Mol Biol; 2006 May; 359(1):202-14. PubMed ID: 16616932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A poke in the eye: inhibiting HIV-1 protease through its flap-recognition pocket.
    Damm KL; Ung PM; Quintero JJ; Gestwicki JE; Carlson HA
    Biopolymers; 2008 Aug; 89(8):643-52. PubMed ID: 18381626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unexpected novel binding mode of pyrrolidine-based aspartyl protease inhibitors: design, synthesis and crystal structure in complex with HIV protease.
    Specker E; Böttcher J; Brass S; Heine A; Lilie H; Schoop A; Müller G; Griebenow N; Klebe G
    ChemMedChem; 2006 Jan; 1(1):106-17. PubMed ID: 16892342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and dynamical properties of different protonated states of mutant HIV-1 protease complexed with the saquinavir inhibitor studied by molecular dynamics simulations.
    Aruksakunwong O; Wittayanarakul K; Sompornpisut P; Sanghiran V; Parasuk V; Hannongbua S
    J Mol Graph Model; 2006 Nov; 25(3):324-32. PubMed ID: 16504560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atypical protonation states in the active site of HIV-1 protease: a computational study.
    Czodrowski P; Sotriffer CA; Klebe G
    J Chem Inf Model; 2007; 47(4):1590-8. PubMed ID: 17503762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE; Trylska J; Tozzini V; McCammon JA
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes.
    Lu Y; Yang CY; Wang S
    J Am Chem Soc; 2006 Sep; 128(36):11830-9. PubMed ID: 16953623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.