These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15521736)

  • 1. One-pot synthesis of high-quality zinc-blende CdS nanocrystals.
    Cao YC; Wang J
    J Am Chem Soc; 2004 Nov; 126(44):14336-7. PubMed ID: 15521736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties.
    Nan W; Niu Y; Qin H; Cui F; Yang Y; Lai R; Lin W; Peng X
    J Am Chem Soc; 2012 Dec; 134(48):19685-93. PubMed ID: 23131103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence.
    He Y; Lu HT; Sai LM; Lai WY; Fan QL; Wang LH; Huang W
    J Phys Chem B; 2006 Jul; 110(27):13370-4. PubMed ID: 16821856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.
    Yang Y; Chen O; Angerhofer A; Cao YC
    Chemistry; 2009; 15(13):3186-97. PubMed ID: 19206119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled synthesis of high quality type-II/type-I CdS/ZnSe/ZnS core/shell1/shell2 nanocrystals.
    Niu JZ; Shen H; Zhou C; Xu W; Li X; Wang H; Lou S; Du Z; Li LS
    Dalton Trans; 2010 Apr; 39(13):3308-14. PubMed ID: 20449461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals.
    Yang Y; Chen O; Angerhofer A; Cao YC
    J Am Chem Soc; 2006 Sep; 128(38):12428-9. PubMed ID: 16984188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphine-free synthesis of CdSe nanocrystals.
    Jasieniak J; Bullen C; van Embden J; Mulvaney P
    J Phys Chem B; 2005 Nov; 109(44):20665-8. PubMed ID: 16853676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of hybrid CdS-Au colloidal nanostructures.
    Saunders AE; Popov I; Banin U
    J Phys Chem B; 2006 Dec; 110(50):25421-9. PubMed ID: 17165989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low-temperature synthesis for organically soluble HgTe nanocrystals exhibiting near-infrared photoluminescence and quantum confinement.
    Piepenbrock MO; Stirner T; Kelly SM; O'Neill M
    J Am Chem Soc; 2006 May; 128(21):7087-90. PubMed ID: 16719490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and optical properties of wurtzite-type CdS nanocrystals.
    Cao H; Wang G; Zhang S; Zhang X; Rabinovich D
    Inorg Chem; 2006 Jun; 45(13):5103-8. PubMed ID: 16780332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation.
    Fragouli D; Resta V; Pompa PP; Laera AM; Caputo G; Tapfer L; Cingolani R; Athanassiou A
    Nanotechnology; 2009 Apr; 20(15):155302. PubMed ID: 19420544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-soluble CdSe and CdSe/CdS nanocrystals: a greener synthetic route.
    Deng DW; Yu JS; Pan Y
    J Colloid Interface Sci; 2006 Jul; 299(1):225-32. PubMed ID: 16494893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-dependent blinking of zinc-blende CdSe/ZnS core/shell nanocrystals.
    Kim Y; Song NW; Yu H; Moon DW; Lim SJ; Kim W; Yoon HJ; Koo Shin S
    Phys Chem Chem Phys; 2009 May; 11(18):3497-502. PubMed ID: 19421553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling surface reactions of CdS nanocrystals: photoluminescence activation, photoetching and photostability under light irradiation.
    Sato K; Kojima S; Hattori S; Chiba T; Ueda-Sarson K; Torimoto T; Tachibana Y; Kuwabata S
    Nanotechnology; 2007 Nov; 18(46):465702. PubMed ID: 21730489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of high quality zinc blende CdSe nanocrystals.
    Mohamed MB; Tonti D; Al-Salman A; Chemseddine A; Chergui M
    J Phys Chem B; 2005 Jun; 109(21):10533-7. PubMed ID: 16852276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One solvent, one pot and free capping ligands: Synthesis of alloyed multipod-branched Cd(x)Zn(1-)(x)S nanocrystals.
    He X; Gao L
    J Colloid Interface Sci; 2010 Sep; 349(1):159-65. PubMed ID: 20570272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals.
    Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H
    J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis.
    Deng Z; Cao L; Tang F; Zou B
    J Phys Chem B; 2005 Sep; 109(35):16671-5. PubMed ID: 16853121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.