BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15521763)

  • 1. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases.
    Chan EW; Chattopadhaya S; Panicker RC; Huang X; Yao SQ
    J Am Chem Soc; 2004 Nov; 126(44):14435-46. PubMed ID: 15521763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic profiling of metalloprotease activities with cocktails of active-site probes.
    Sieber SA; Niessen S; Hoover HS; Cravatt BF
    Nat Chem Biol; 2006 May; 2(5):274-81. PubMed ID: 16565715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-based probes for the proteomic profiling of metalloproteases.
    Saghatelian A; Jessani N; Joseph A; Humphrey M; Cravatt BF
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10000-5. PubMed ID: 15220480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The selectivity of galardin and an azasugar-based hydroxamate compound for human matrix metalloproteases and bacterial metalloproteases.
    Sylte I; Dawadi R; Malla N; von Hofsten S; Nguyen TM; Solli AI; Berg E; Adekoya OA; Svineng G; Winberg JO
    PLoS One; 2018; 13(8):e0200237. PubMed ID: 30075004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity based chemical proteomics: profiling proteases as drug targets.
    Heal WP; Wickramasinghe SR; Tate EW
    Curr Drug Discov Technol; 2008 Sep; 5(3):200-12. PubMed ID: 18690889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying common metalloprotease inhibitors by protein fold types using Fourier transform mass spectrometry.
    Mitchell JK; Pitcher D; McArdle BM; Alnefelt T; Duffy S; Avery V; Quinn RJ
    Bioorg Med Chem Lett; 2007 Dec; 17(23):6521-4. PubMed ID: 17933532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoaffinity labeling in activity-based protein profiling.
    Geurink PP; Prely LM; van der Marel GA; Bischoff R; Overkleeft HS
    Top Curr Chem; 2012; 324():85-113. PubMed ID: 22028098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-Directed Modification of Active Matrix Metalloproteases: Activity-based Probes with no Photolabile Group.
    Kaminska M; Bruyat P; Malgorn C; Doladilhe M; Cassar-Lajeunesse E; Fruchart Gaillard C; De Souza M; Beau F; Thai R; Correia I; Galat A; Georgiadis D; Lequin O; Dive V; Bregant S; Devel L
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):18272-18279. PubMed ID: 34096148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angiotensin-converting enzyme secretase is inhibited by zinc metalloprotease inhibitors and requires its substrate to be inserted in a lipid bilayer.
    Parvathy S; Oppong SY; Karran EH; Buckle DR; Turner AJ; Hooper NM
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):37-43. PubMed ID: 9355732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversed hydroxamate-bearing thermolysin inhibitors mimic a high-energy intermediate along the enzyme-catalyzed proteolytic reaction pathway.
    Park JD; Kim DH
    Bioorg Med Chem Lett; 2003 Oct; 13(19):3161-6. PubMed ID: 12951085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes.
    Adam GC; Sorensen EJ; Cravatt BF
    Mol Cell Proteomics; 2002 Oct; 1(10):828-35. PubMed ID: 12438565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probes for activity-based profiling of plant proteases.
    van der Hoorn RA; Kaiser M
    Physiol Plant; 2012 May; 145(1):18-27. PubMed ID: 21985675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Click" synthesis of small molecule probes for activity-based fingerprinting of matrix metalloproteases.
    Wang J; Uttamchandani M; Li J; Hu M; Yao SQ
    Chem Commun (Camb); 2006 Sep; (36):3783-5. PubMed ID: 16969456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metalloprotease inhibitors GM6001 and TAPI-0 inhibit the obligate intracellular human pathogen Chlamydia trachomatis by targeting peptide deformylase of the bacterium.
    Balakrishnan A; Patel B; Sieber SA; Chen D; Pachikara N; Zhong G; Cravatt BF; Fan H
    J Biol Chem; 2006 Jun; 281(24):16691-9. PubMed ID: 16565079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Hydroxamates and Reversed Hydroxamates to Inhibit Zinc-containing Proteases but not Cytochrome P450s: Insights from Quantum Mechanics and Protein-ligand Crystal Structures.
    Barker C; Lukac I; Leach AG
    Mol Inform; 2015 Sep; 34(9):608-14. PubMed ID: 27490712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype.
    Adam GC; Sorensen EJ; Cravatt BF
    Nat Biotechnol; 2002 Aug; 20(8):805-9. PubMed ID: 12091914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Lysine-Targeted Affinity Label for Serine-β-Lactamase Also Covalently Modifies New Delhi Metallo-β-lactamase-1 (NDM-1).
    Thomas PW; Cammarata M; Brodbelt JS; Monzingo AF; Pratt RF; Fast W
    Biochemistry; 2019 Jun; 58(25):2834-2843. PubMed ID: 31145588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of inhibitor-metalloenzyme interactions and selectivity using molecular mechanics grounded in quantum chemistry.
    Garmer DR; Gresh N; Roques BP
    Proteins; 1998 Apr; 31(1):42-60. PubMed ID: 9552158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of pseudolysin and thermolysin by hydroxamate-based MMP inhibitors.
    Adekoya OA; Sjøli S; Wuxiuer Y; Bilto I; Marques SM; Santos MA; Nuti E; Cercignani G; Rossello A; Winberg JO; Sylte I
    Eur J Med Chem; 2015 Jan; 89():340-8. PubMed ID: 25462250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced potency of the metalloprotease inhibitor TAPI-2 by multivalent display.
    Raissi AJ; Scangarello FA; Hulce KR; Pontrello JK; Paradis S
    Bioorg Med Chem Lett; 2014 Apr; 24(8):2002-7. PubMed ID: 24581919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.