BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15521766)

  • 1. Simulated evolution of emergent chiral structures in polyalanine.
    Nanda V; Degrado WF
    J Am Chem Soc; 2004 Nov; 126(44):14459-67. PubMed ID: 15521766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated folding in polypeptides of diversified molecular tacticity: implications for protein folding and de novo design.
    Ramakrishnan V; Ranbhor R; Durani S
    Biopolymers; 2005 Jun; 78(2):96-105. PubMed ID: 15690413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of protein homochirality in shaping the energy landscape of folding.
    Nanda V; Andrianarijaona A; Narayanan C
    Protein Sci; 2007 Aug; 16(8):1667-75. PubMed ID: 17600146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational design of heterochiral peptides against a helical target.
    Nanda V; DeGrado WF
    J Am Chem Soc; 2006 Jan; 128(3):809-16. PubMed ID: 16417370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design of proteins stereochemically optimized in size, stability, and folding speed.
    Joshi S; Rana S; Wangikar P; Durani S
    Biopolymers; 2006 Oct; 83(2):122-34. PubMed ID: 16683262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting diverse stereochemistry of β-amino acids: toward a rational design of sheet-forming β-peptide systems.
    Pohl G; Beke-Somfai T; Csizmadia IG; Perczel A
    Amino Acids; 2012 Aug; 43(2):735-49. PubMed ID: 22057667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulations of polyalanine using a reduced model and statistics-based interaction potentials.
    van Giessen AE; Straub JE
    J Chem Phys; 2005 Jan; 122(2):024904. PubMed ID: 15638627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of chirality and reduced flexibility of protein side chains: a study with square and tetrahedral lattice models.
    Zhang J; Chen Y; Chen R; Liang J
    J Chem Phys; 2004 Jul; 121(1):592-603. PubMed ID: 15260581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
    Ghosh T; Garde S; García AE
    Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating ensemble averages for small proteins from extended conformations by Monte Carlo simulations.
    Derreumaux P
    Phys Rev Lett; 2000 Jul; 85(1):206-9. PubMed ID: 10991195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coarse-grained model and associated lattice Monte Carlo simulation of the coil-helix transition of a homopolypeptide.
    Chen Y; Zhang Q; Ding J
    J Chem Phys; 2004 Feb; 120(7):3467-74. PubMed ID: 15268504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):338-52. PubMed ID: 8208726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Investigation of the Effect of Backbone Chiral Inversions on Polypeptide Structure.
    Zerze GH; Khan MN; Stillinger FH; Debenedetti PG
    J Phys Chem B; 2018 Jun; 122(24):6357-6363. PubMed ID: 29793336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation and use of protein backbone angle probabilities.
    Kang HS; Kurochkina NA; Lee B
    J Mol Biol; 1993 Jan; 229(2):448-60. PubMed ID: 8429556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversal of peptide backbone direction may result in the mirroring of protein structure.
    Guptasarma P
    FEBS Lett; 1992 Oct; 310(3):205-10. PubMed ID: 1397274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the alternating backbone configuration on the secondary structure and self-assembly of beta-peptides.
    Martinek TA; Mándity IM; Fülöp L; Tóth GK; Vass E; Hollósi M; Forró E; Fülöp F
    J Am Chem Soc; 2006 Oct; 128(41):13539-44. PubMed ID: 17031967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of an intermediate-resolution lattice model and re-examination of the helix-coil transition: a dynamic Monte Carlo simulation.
    Chen Y; Ding J
    J Biomol Struct Dyn; 2014; 32(5):792-803. PubMed ID: 23746129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New helical folds in α-peptides with alternating chirality.
    Sharma GV; Venkateshwarlu G; Reddy PP; Kunwar AC
    Chemistry; 2014 Sep; 20(36):11428-38. PubMed ID: 25056860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of a sweet protein single-chain monellin determined by nuclear magnetic resonance and dynamical simulated annealing calculations.
    Lee SY; Lee JH; Chang HJ; Cho JM; Jung JW; Lee W
    Biochemistry; 1999 Feb; 38(8):2340-6. PubMed ID: 10029527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.