These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15521777)

  • 1. Concomitant length and diameter separation of single-walled carbon nanotubes.
    Heller DA; Mayrhofer RM; Baik S; Grinkova YV; Usrey ML; Strano MS
    J Am Chem Soc; 2004 Nov; 126(44):14567-73. PubMed ID: 15521777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-assisted dispersion and separation of carbon nanotubes.
    Zheng M; Jagota A; Semke ED; Diner BA; McLean RS; Lustig SR; Richardson RE; Tassi NG
    Nat Mater; 2003 May; 2(5):338-42. PubMed ID: 12692536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes.
    Zhang L; Tu X; Welsher K; Wang X; Zheng M; Dai H
    J Am Chem Soc; 2009 Feb; 131(7):2454-5. PubMed ID: 19193007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm.
    Sun X; Zaric S; Daranciang D; Welsher K; Lu Y; Li X; Dai H
    J Am Chem Soc; 2008 May; 130(20):6551-5. PubMed ID: 18426207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality-resolved length analysis of single-walled carbon nanotube samples through shear-aligned photoluminescence anisotropy.
    Casey JP; Bachilo SM; Moran CH; Weisman RB
    ACS Nano; 2008 Aug; 2(8):1738-46. PubMed ID: 19206379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SDS surfactants on carbon nanotubes: aggregate morphology.
    Tummala NR; Striolo A
    ACS Nano; 2009 Mar; 3(3):595-602. PubMed ID: 19228060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constrained iron catalysts for single-walled carbon nanotube growth.
    Kramer RM; Sowards LA; Pender MJ; Stone MO; Naik RR
    Langmuir; 2005 Aug; 21(18):8466-70. PubMed ID: 16114958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.
    Zhang L; Balzano L; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions.
    Kanungo M; Lu H; Malliaras GG; Blanchet GB
    Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers.
    Nish A; Hwang JY; Doig J; Nicholas RJ
    Nat Nanotechnol; 2007 Oct; 2(10):640-6. PubMed ID: 18654390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of carbon nanotubes by frit inlet asymmetrical flow field-flow fractionation.
    Moon MH; Kang D; Jung J; Kim J
    J Sep Sci; 2004 Jun; 27(9):710-7. PubMed ID: 15387467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst size effects on the growth of single-walled nanotubes in neutral and plasma systems.
    Tam E; Ostrikov KK
    Nanotechnology; 2009 Sep; 20(37):375603. PubMed ID: 19706955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of endohedral water on diameter sorting of single-walled carbon nanotubes by density gradient centrifugation.
    Quintillá A; Hennrich F; Lebedkin S; Kappes MM; Wenzel W
    Phys Chem Chem Phys; 2010 Jan; 12(4):902-8. PubMed ID: 20066375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments.
    Xu X; Ray R; Gu Y; Ploehn HJ; Gearheart L; Raker K; Scrivens WA
    J Am Chem Soc; 2004 Oct; 126(40):12736-7. PubMed ID: 15469243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of single-walled carbon nanotubes by use of ionic liquid-aided capillary electrophoresis.
    López-Pastor M; Domínguez-Vidal A; Ayora-Cañada MJ; Simonet BM; Lendl B; Valcarcel M
    Anal Chem; 2008 Apr; 80(8):2672-9. PubMed ID: 18341301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids.
    Lustig SR; Jagota A; Khripin C; Zheng M
    J Phys Chem B; 2005 Feb; 109(7):2559-66. PubMed ID: 16851257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous dispersion and dielectrophoretic assembly of individual surface-synthesized single-walled carbon nanotubes.
    Burg BR; Schneider J; Muoth M; Durrer L; Helbling T; Schirmer NC; Schwamb T; Hierold C; Poulikakos D
    Langmuir; 2009 Jul; 25(14):7778-82. PubMed ID: 19537808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.