These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
450 related articles for article (PubMed ID: 15522752)
1. Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Yu TT; Shoichet MS Biomaterials; 2005 May; 26(13):1507-14. PubMed ID: 15522752 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of cell-adhesive dextran hydrogels and macroporous scaffolds. Lévesque SG; Shoichet MS Biomaterials; 2006 Oct; 27(30):5277-85. PubMed ID: 16793132 [TBL] [Abstract][Full Text] [Related]
3. Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. Yu LM; Kazazian K; Shoichet MS J Biomed Mater Res A; 2007 Jul; 82(1):243-55. PubMed ID: 17295228 [TBL] [Abstract][Full Text] [Related]
4. The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Kubinová S; Horák D; Kozubenko N; Vanecek V; Proks V; Price J; Cocks G; Syková E Biomaterials; 2010 Aug; 31(23):5966-75. PubMed ID: 20483453 [TBL] [Abstract][Full Text] [Related]
5. Excimer laser channel creation in polyethersulfone hollow fibers for compartmentalized in vitro neuronal cell culture scaffolds. Brayfield CA; Marra KG; Leonard JP; Tracy Cui X; Gerlach JC Acta Biomater; 2008 Mar; 4(2):244-55. PubMed ID: 18060849 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Koh HS; Yong T; Chan CK; Ramakrishna S Biomaterials; 2008 Sep; 29(26):3574-82. PubMed ID: 18533251 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic three-dimensional peptide channels guide neurite outgrowth within a biodegradable hydrogel matrix. Musoke-Zawedde P; Shoichet MS Biomed Mater; 2006 Sep; 1(3):162-9. PubMed ID: 18458398 [TBL] [Abstract][Full Text] [Related]
8. Optimal micropattern dimensions enhance neurite outgrowth rates, lengths, and orientations. Song M; Uhrich KE Ann Biomed Eng; 2007 Oct; 35(10):1812-20. PubMed ID: 17616821 [TBL] [Abstract][Full Text] [Related]
9. Oriented Schwann cell growth on microgrooved surfaces. Hsu SH; Chen CY; Lu PS; Lai CS; Chen CJ Biotechnol Bioeng; 2005 Dec; 92(5):579-88. PubMed ID: 16261633 [TBL] [Abstract][Full Text] [Related]
10. Neurite guidance on protein micropatterns generated by a piezoelectric microdispenser. Gustavsson P; Johansson F; Kanje M; Wallman L; Linsmeier CE Biomaterials; 2007 Feb; 28(6):1141-51. PubMed ID: 17109955 [TBL] [Abstract][Full Text] [Related]
11. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Santiago LY; Nowak RW; Peter Rubin J; Marra KG Biomaterials; 2006 May; 27(15):2962-9. PubMed ID: 16445976 [TBL] [Abstract][Full Text] [Related]
12. Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization. Azemi E; Stauffer WR; Gostock MS; Lagenaur CF; Cui XT Acta Biomater; 2008 Sep; 4(5):1208-17. PubMed ID: 18420473 [TBL] [Abstract][Full Text] [Related]
13. Enhancing neurite outgrowth from primary neurones and neural stem cells using thermoresponsive hydrogel scaffolds for the repair of spinal cord injury. Nisbet DR; Moses D; Gengenbach TR; Forsythe JS; Finkelstein DI; Horne MK J Biomed Mater Res A; 2009 Apr; 89(1):24-35. PubMed ID: 18404707 [TBL] [Abstract][Full Text] [Related]
14. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260 [TBL] [Abstract][Full Text] [Related]
15. Toward spinal cord injury repair strategies: peptide surface modification of expanded poly(tetrafluoroethylene) fibers for guided neurite outgrowth in vitro. Shaw D; Shoichet MS J Craniofac Surg; 2003 May; 14(3):308-16. PubMed ID: 12826801 [TBL] [Abstract][Full Text] [Related]
16. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946 [TBL] [Abstract][Full Text] [Related]
17. Tailored laminin-332 alpha3 sequence is tethered through an enzymatic linker to a collagen scaffold to promote cellular adhesion. Damodaran G; Collighan R; Griffin M; Navsaria H; Pandit A Acta Biomater; 2009 Sep; 5(7):2441-50. PubMed ID: 19364681 [TBL] [Abstract][Full Text] [Related]
18. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Dankers PY; Harmsen MC; Brouwer LA; van Luyn MJ; Meijer EW Nat Mater; 2005 Jul; 4(7):568-74. PubMed ID: 15965478 [TBL] [Abstract][Full Text] [Related]
19. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Jin GZ; Kim M; Shin US; Kim HW Neurosci Lett; 2011 Aug; 501(1):10-4. PubMed ID: 21723372 [TBL] [Abstract][Full Text] [Related]
20. Directed growth of adult human white matter stem cell-derived neurons on aligned fibrillar collagen. Lanfer B; Hermann A; Kirsch M; Freudenberg U; Reuner U; Werner C; Storch A Tissue Eng Part A; 2010 Apr; 16(4):1103-13. PubMed ID: 19860550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]