BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15522817)

  • 1. The novel pathway for ketodiene oxylipin biosynthesis in Jerusalem artichoke (Helianthus tuberosus) tubers.
    Chechetkin IR; Medvedeva NV; Grechkin AN
    Biochim Biophys Acta; 2004 Nov; 1686(1-2):7-14. PubMed ID: 15522817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipoxygenase-mediated metabolism of storage lipids in germinating sunflower cotyledons and beta-oxidation of (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid by the cotyledonary glyoxysomes.
    Gerhardt B; Fischer K; Balkenhohl TJ; Pohnert G; Kühn H; Wasternack C; Feussner I
    Planta; 2005 Apr; 220(6):919-30. PubMed ID: 15526214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lipoxygenase pathway in tulip (Tulipa gesneriana): detection of the ketol route.
    Grechkin AN; Mukhtarova LS; Hamberg M
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):501-9. PubMed ID: 11085944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals.
    Schneider C; Tallman KA; Porter NA; Brash AR
    J Biol Chem; 2001 Jun; 276(24):20831-8. PubMed ID: 11259420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of metabolic pathway of linoleic acid 9-hydroperoxide in cytosolic fraction of potato tubers and identification of reaction products.
    Kimura H; Yokota K
    Appl Biochem Biotechnol; 2004; 118(1-3):115-32. PubMed ID: 15304744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues.
    Di Martino C; Pallotta ML
    Planta; 2011 Oct; 234(4):657-70. PubMed ID: 21598001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomics reveals drastic compositional changes during overwintering of Jerusalem artichoke (Helianthus tuberosus L.) tubers.
    Clausen MR; Bach V; Edelenbos M; Bertram HC
    J Agric Food Chem; 2012 Sep; 60(37):9495-501. PubMed ID: 22900787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soybean lipoxygenase-1 enzymically forms both (9S)- and (13S)-hydroperoxides from linoleic acid by a pH-dependent mechanism.
    Gardner HW
    Biochim Biophys Acta; 1989 Feb; 1001(3):274-81. PubMed ID: 2492826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lipoxygenase pathway in garlic (Allium sativum L.) bulbs: detection of the novel divinyl ether oxylipins.
    Grechkin AN; Fazliev FN; Mukhtarova LS
    FEBS Lett; 1995 Sep; 371(2):159-62. PubMed ID: 7672118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of ketodienoic fatty acids by the pure pea lipoxygenase-1.
    Kühn H; Wiesner R; Rathmann J; Schewe T
    Eicosanoids; 1991; 4(1):9-14. PubMed ID: 1905562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereospecific biosynthesis of (9S,13S)-10-oxo-phytoenoic acid in young maize roots.
    Ogorodnikova AV; Gorina SS; Mukhtarova LS; Mukhitova FK; Toporkova YY; Hamberg M; Grechkin AN
    Biochim Biophys Acta; 2015 Sep; 1851(9):1262-70. PubMed ID: 26008579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipoxygenase pathway in tulip: biosynthesis of ketols.
    Grechkin AN; Mukhtarova LS; Hamberg M
    Biochem Soc Trans; 2000 Dec; 28(6):851-3. PubMed ID: 11171230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of biosynthesis of divinyl ether oxylipins by enzyme from garlic bulbs.
    Grechkin AN; Ilyasov AV; Hamberg M
    Eur J Biochem; 1997 Apr; 245(1):137-42. PubMed ID: 9128734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt stress induced differential metabolic responses in the sprouting tubers of Jerusalem artichoke (Helianthus tuberosus L.).
    Zou HX; Zhao D; Wen H; Li N; Qian W; Yan X
    PLoS One; 2020; 15(6):e0235415. PubMed ID: 32598354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Payne rearrangement during analysis of epoxyalcohols of linoleic and alpha-linolenic acids by normal phase liquid chromatography with tandem mass spectrometry.
    Oliw EH; Garscha U; Nilsson T; Cristea M
    Anal Biochem; 2006 Jul; 354(1):111-26. PubMed ID: 16712763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical composition of the tuber essential oil from Helianthus tuberosus L. (Asteraceae).
    Radulović NS; Đorđević MR
    Chem Biodivers; 2014 Mar; 11(3):427-37. PubMed ID: 24634072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal conversions of trimethylsilyl peroxides of linoleic and linolenic acids.
    Grechkin AN; Mukhtarova LS; Hamberg M
    Chem Phys Lipids; 2005 Dec; 138(1-2):93-101. PubMed ID: 16242681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conversions of fatty acid peroxides to cyclopentenones: a biomimetic model for allene oxide synthase pathway.
    Mukhtarova LS; Mukhitova FK; Grechkin AN
    Chem Phys Lipids; 2013; 175-176():92-8. PubMed ID: 23999011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of Oxylipins by Rhizoctonia solani with Allene Oxide and Oleate 8S,9S-Diol Synthase Activities.
    Oliw EH
    Lipids; 2018 May; 53(5):527-537. PubMed ID: 30009385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroperoxides of alpha-ketols. Novel products of the plant lipoxygenase pathway.
    Grechkin AN; Kuramshin RA; Latypov SK; Safonova YYu ; Gafarova TE; Ilyasov AV
    Eur J Biochem; 1991 Jul; 199(2):451-7. PubMed ID: 1906404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.