BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 15523106)

  • 1. Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy.
    McCarty MF
    Integr Cancer Ther; 2004 Dec; 3(4):349-80. PubMed ID: 15523106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostate cancer chemoprevention by silibinin: bench to bedside.
    Singh RP; Agarwal R
    Mol Carcinog; 2006 Jun; 45(6):436-42. PubMed ID: 16637061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with beta-phenylethyl isothiocyanate and curcumin.
    Kim JH; Xu C; Keum YS; Reddy B; Conney A; Kong AN
    Carcinogenesis; 2006 Mar; 27(3):475-82. PubMed ID: 16299382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis.
    Pili R; Kruszewski MP; Hager BW; Lantz J; Carducci MA
    Cancer Res; 2001 Feb; 61(4):1477-85. PubMed ID: 11245454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifocal angiostatic therapy: an update.
    McCarty MF; Block KI
    Integr Cancer Ther; 2005 Dec; 4(4):301-14. PubMed ID: 16282507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappaB-mediated inducible chemoresistance.
    Singh RP; Mallikarjuna GU; Sharma G; Dhanalakshmi S; Tyagi AK; Chan DC; Agarwal C; Agarwal R
    Clin Cancer Res; 2004 Dec; 10(24):8641-7. PubMed ID: 15623648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular targeting therapy for pancreatic cancer.
    Xiong HQ
    Cancer Chemother Pharmacol; 2004 Sep; 54 Suppl 1():S69-77. PubMed ID: 15316751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual inhibition of the epidermal growth factor and vascular endothelial growth factor phosphorylation for antivascular therapy of human prostate cancer in the prostate of nude mice.
    Yazici S; Kim SJ; Busby JE; He J; Thaker P; Yokoi K; Fan D; Fidler IJ
    Prostate; 2005 Nov; 65(3):203-15. PubMed ID: 15948138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of glioblastoma angiogenesis and invasion by combined treatments directed against vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and vascular endothelial-cadherin.
    Lamszus K; Brockmann MA; Eckerich C; Bohlen P; May C; Mangold U; Fillbrandt R; Westphal M
    Clin Cancer Res; 2005 Jul; 11(13):4934-40. PubMed ID: 16000592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel anticancer drug discovery.
    Buolamwini JK
    Curr Opin Chem Biol; 1999 Aug; 3(4):500-9. PubMed ID: 10419854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of IKK inhibitor PS1145 on NF-kappaB function, proliferation, apoptosis and invasion activity in prostate carcinoma cells.
    Yemelyanov A; Gasparian A; Lindholm P; Dang L; Pierce JW; Kisseljov F; Karseladze A; Budunova I
    Oncogene; 2006 Jan; 25(3):387-98. PubMed ID: 16170348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GCP-mediated growth inhibition and apoptosis of prostate cancer cells via androgen receptor-dependent and -independent mechanisms.
    Tepper CG; Vinall RL; Wee CB; Xue L; Shi XB; Burich R; Mack PC; de Vere White RW
    Prostate; 2007 Apr; 67(5):521-35. PubMed ID: 17252539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways.
    Hwang JT; Ha J; Park OJ
    Biochem Biophys Res Commun; 2005 Jul; 332(2):433-40. PubMed ID: 15896711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of chemopreventive agents in cancer therapy.
    Dorai T; Aggarwal BB
    Cancer Lett; 2004 Nov; 215(2):129-40. PubMed ID: 15488631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting angiogenesis with integrative cancer therapies.
    Yance DR; Sagar SM
    Integr Cancer Ther; 2006 Mar; 5(1):9-29. PubMed ID: 16484711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal therapy of human pancreatic cancer and NF1-deficient breast cancer xenograft in mice by a combination of PP1 and GL-2003, anti-PAK1 drugs (Tyr-kinase inhibitors).
    Hirokawa Y; Levitzki A; Lessene G; Baell J; Xiao Y; Zhu H; Maruta H
    Cancer Lett; 2007 Jan; 245(1-2):242-51. PubMed ID: 16540233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate.
    Khan N; Afaq F; Saleem M; Ahmad N; Mukhtar H
    Cancer Res; 2006 Mar; 66(5):2500-5. PubMed ID: 16510563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis.
    Li L; Braiteh FS; Kurzrock R
    Cancer; 2005 Sep; 104(6):1322-31. PubMed ID: 16092118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones.
    Guo Y; Wang S; Hoot DR; Clinton SK
    J Nutr Biochem; 2007 Jun; 18(6):408-17. PubMed ID: 17142033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer.
    Adhami VM; Siddiqui IA; Ahmad N; Gupta S; Mukhtar H
    Cancer Res; 2004 Dec; 64(23):8715-22. PubMed ID: 15574782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.