BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15523114)

  • 1. Phenotypic differences in reentrainment behavior and sensitivity to nighttime light pulses in siberian hamsters.
    Ruby NF; Barakat MT; Heller HC
    J Biol Rhythms; 2004 Dec; 19(6):530-41. PubMed ID: 15523114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light pulses do not induce c-fos or per1 in the SCN of hamsters that fail to reentrain to the photocycle.
    Barakat MT; O'Hara BF; Cao VH; Larkin JE; Heller HC; Ruby NF
    J Biol Rhythms; 2004 Aug; 19(4):287-97. PubMed ID: 15245648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase shift magnitude and direction determine whether Siberian hamsters reentrain to the photocycle.
    Ruby NF; Joshi N; Heller HC
    J Biol Rhythms; 1998 Dec; 13(6):506-17. PubMed ID: 9850011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-entrainment behavior of Djungarian hamsters (Phodopus sungorus) with different rhythmic phenotype following light-dark shifts.
    Schöttner K; Limbach A; Weinert D
    Chronobiol Int; 2011 Feb; 28(1):58-69. PubMed ID: 21182405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constant darkness restores entrainment to phase-delayed Siberian hamsters.
    Ruby NF; Joshi N; Heller HC
    Am J Physiol Regul Integr Comp Physiol; 2002 Dec; 283(6):R1314-20. PubMed ID: 12388431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeleton photoperiods alter delayed-type hypersensitivity responses and reproductive function of Siberian hamsters (Phodopus sungorus).
    Gatien ML; Hotchkiss AK; Dhabhar FS; Nelson RJ
    J Neuroendocrinol; 2005 Nov; 17(11):733-9. PubMed ID: 16219002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reentrainment Impairs Spatial Working Memory until Both Activity Onset and Offset Reentrain.
    Ruby NF; Patton DF; Bane S; Looi D; Heller HC
    J Biol Rhythms; 2015 Oct; 30(5):408-16. PubMed ID: 26224657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric control of short day response in European hamsters.
    Monecke S; Malan A; Wollnik F
    J Biol Rhythms; 2006 Aug; 21(4):290-300. PubMed ID: 16864649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.
    Dumont M; Blais H; Roy J; Paquet J
    J Biol Rhythms; 2009 Oct; 24(5):427-37. PubMed ID: 19755587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reentrainment of the circadian pacemaker through three distinct stages.
    Liu T; Borjigin J
    J Biol Rhythms; 2005 Oct; 20(5):441-50. PubMed ID: 16267383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Siberian hamsters that fail to reentrain to the photocycle have suppressed melatonin levels.
    Ruby NF; Dubocovich ML; Heller HC
    Am J Physiol Regul Integr Comp Physiol; 2000 Mar; 278(3):R757-62. PubMed ID: 10712298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoperiodic regulation of circulating leukocytes in juvenile Siberian hamsters: mediation by melatonin and testosterone.
    Prendergast BJ; Hotchkiss AK; Nelson RJ
    J Biol Rhythms; 2003 Dec; 18(6):473-80. PubMed ID: 14667148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thalamic intergeniculate leaflet mediates locomotor activity-induced reversal of phenotype in photoperiod nonresponsive Siberian hamsters.
    Freeman DA; Teubner BJ; Goldman BD
    J Biol Rhythms; 2006 Jun; 21(3):206-13. PubMed ID: 16731660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of photoperiod in accelerating the reentrainment in Drosophila.
    Sinam B; Sharma S; Thakurdas P; Joshi D
    Chronobiol Int; 2012 Dec; 29(10):1405-11. PubMed ID: 23130708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian effects of light no brighter than moonlight.
    Evans JA; Elliott JA; Gorman MR
    J Biol Rhythms; 2007 Aug; 22(4):356-67. PubMed ID: 17660452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feeding schedule controls circadian timing of daily torpor in SCN-ablated Siberian hamsters.
    Paul MJ; Kauffman AS; Zucker I
    J Biol Rhythms; 2004 Jun; 19(3):226-37. PubMed ID: 15155009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Siberian hamsters free run or become arrhythmic after a phase delay of the photocycle.
    Ruby NF; Saran A; Kang T; Franken P; Heller HC
    Am J Physiol; 1996 Oct; 271(4 Pt 2):R881-90. PubMed ID: 8897977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.