These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1552324)

  • 1. Peripherally induced and anticipating elevator muscle activity during simulated chewing in humans.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F
    J Neurophysiol; 1992 Jan; 67(1):75-83. PubMed ID: 1552324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of elevator muscle activity during simulated chewing with varying food resistance in humans.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F
    J Neurophysiol; 1992 Sep; 68(3):933-44. PubMed ID: 1432058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of human jaw elevator muscle activity during simulated chewing with varying bolus size.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F
    Exp Brain Res; 1993; 96(3):501-12. PubMed ID: 8299751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of sensory information in the control of rhythmic open-close movements in humans.
    van der Bilt A; Weijnen FG; Ottenhoff FA; van der Glas HW; Bosman F
    J Dent Res; 1995 Oct; 74(10):1658-64. PubMed ID: 7499588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the mandibular stretch reflex sensitivity during various phases of rhythmic open-close movements in humans.
    van der Bilt A; Ottenhoff FA; van der Glas HW; Bosman F; Abbink JH
    J Dent Res; 1997 Apr; 76(4):839-47. PubMed ID: 9126179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of jaw-opener and jaw-closer muscle activity in humans to overcome an external force counteracting jaw movement.
    Abbink JH; van der Bilt A; Bosman F; van der Glas HW
    Exp Brain Res; 1998 Jan; 118(2):269-78. PubMed ID: 9547097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between jaw elevator muscle surface electromyogram and simulated food resistance during dynamic condition in humans.
    Ottenhoff FA; van der Bilt A; van der Glas HW; Bosman F; Abbink JH
    J Oral Rehabil; 1996 Apr; 23(4):270-9. PubMed ID: 8730275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle activity and jaw movements as predictors of chewing performance.
    Wilding RJ; Shaikh M
    J Orofac Pain; 1997; 11(1):24-36. PubMed ID: 10332308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods.
    Peyron MA; Lassauzay C; Woda A
    Exp Brain Res; 2002 Jan; 142(1):41-51. PubMed ID: 11797083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal profile and amplitude of human masseter muscle activity is adapted to food properties during individual chewing cycles.
    Grigoriadis A; Johansson RS; Trulsson M
    J Oral Rehabil; 2014 May; 41(5):367-73. PubMed ID: 24612326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between elevator muscle activity and direction of sagittal closing pathway during unilateral chewing.
    Kimoto K; Tamaki K; Yoshino T; Toyoda M; Celar AG
    J Oral Rehabil; 2002 May; 29(5):430-4. PubMed ID: 12028489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short electromyographic bursts in the rabbit digastric muscle during the jaw-closing phase.
    Haraguchi N; Yamada Y
    Arch Oral Biol; 1992; 37(6):451-8. PubMed ID: 1637260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of electromyograms of the masseter, temporalis, and anterior digastric muscles obtained by surface and intramuscular electrodes: raw-EMG.
    Koole P; de Jongh HJ; Boering G
    Cranio; 1991 Jul; 9(3):228-40. PubMed ID: 1810669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-dependence of jaw elevator and depressor co-activation.
    Proeschel PA; Raum J
    J Dent Res; 2003 Aug; 82(8):617-20. PubMed ID: 12885846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns of jaw muscle activity during voluntary chewing.
    Plesh O; Bishop B; McCall WD
    J Oral Rehabil; 1996 Apr; 23(4):262-9. PubMed ID: 8730274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor control of jaw muscles in chewing and in isometric biting with graded narrowing of jaw gape.
    Pröschel PA; Jamal T; Morneburg TR
    J Oral Rehabil; 2008 Oct; 35(10):722-8. PubMed ID: 18482344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indications for jaw gape-related control of relative muscle activation in sequent chewing strokes.
    Pröschel PA; Morneburg TR
    J Oral Rehabil; 2010 Mar; 37(3):178-84. PubMed ID: 19968765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speed-dependent control of cyclic open-close movements of the human jaw with an external force counteracting closing.
    Abbink JH; van der Bilt A; Bosman F; van der Glas HW
    J Dent Res; 1999 Apr; 78(4):878-86. PubMed ID: 10326732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyographic heterogeneity in the human temporalis and masseter muscles during static biting, open/close excursions, and chewing.
    Blanksma NG; van Eijden TM
    J Dent Res; 1995 Jun; 74(6):1318-27. PubMed ID: 7629340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of mandibular movement trajectories and associated patterns of oral muscle electromyographic activity during spontaneous and apomorphine-induced rhythmic jaw movements in the guinea pig.
    Lambert RW; Goldberg LJ; Chandler SH
    J Neurophysiol; 1986 Feb; 55(2):301-19. PubMed ID: 3950693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.