These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1552349)

  • 21. Usefulness and pitfalls of planar gamma-scintigraphy for measuring aerosol deposition in the lungs: a Monte Carlo investigation.
    Lee Z; Ljungberg M; Muzic RF; Berridge MS
    J Nucl Med; 2001 Jul; 42(7):1077-83. PubMed ID: 11438631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implications of dual-energy-window (DEW) scatter correction inaccuracies for 111In quantitative geometric mean imaging.
    Choi CW; Barker WC; Buvat I; Carrasquillo JA; Bacharach SL
    Nucl Med Commun; 1997 Jan; 18(1):79-86. PubMed ID: 9061707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of backscatter material on 99mTc and 201Tl line source responses.
    de Jong HW; Beekman FJ; Ljungberg M; van Rijk PP
    Phys Med Biol; 1999 Mar; 44(3):665-79. PubMed ID: 10211801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitation of tumor uptake with molecular breast imaging.
    Bache ST; Kappadath SC
    Med Phys; 2017 Sep; 44(9):4593-4607. PubMed ID: 28600857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A practical method for position-dependent Compton-scatter correction in single photon emission CT.
    Ogawa K; Harata Y; Ichihara T; Kubo A; Hashimoto S
    IEEE Trans Med Imaging; 1991; 10(3):408-12. PubMed ID: 18222843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Estimation of scatter component in SPECT planar image using a Monte Carlo method].
    Ogawa K; Harata Y; Ichihara T; Kubo A; Hashimoto S
    Kaku Igaku; 1990 May; 27(5):467-76. PubMed ID: 2395230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of four scatter correction methods using Monte Carlo simulated source distributions.
    Ljungberg M; King MA; Hademenos GJ; Strand SE
    J Nucl Med; 1994 Jan; 35(1):143-51. PubMed ID: 8271036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneously constraining SPECT activity estimates with primary and secondary energy window projection data.
    Smith MF; Jaszczak RJ
    IEEE Trans Med Imaging; 1994; 13(2):329-37. PubMed ID: 18218509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT.
    Ichihara T; Ogawa K; Motomura N; Kubo A; Hashimoto S
    J Nucl Med; 1993 Dec; 34(12):2216-21. PubMed ID: 8254414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of quantitative accuracy among different scatter corrections for quantitative bone SPECT/CT imaging.
    Miwa K; Nemoto R; Masuko H; Yamao T; Kobayashi R; Miyaji N; Inoue K; Onodera H
    PLoS One; 2022; 17(6):e0269542. PubMed ID: 35666737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo evaluation of Compton scatter subtraction in single photon emission computed tomography.
    Floyd CE; Jaszczak RJ; Harris CC; Greer KL; Coleman RE
    Med Phys; 1985; 12(6):776-8. PubMed ID: 3878451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the reconstructibility and noise properties of scattered photons in 99mTc SPECT.
    Kadrmas DJ; Frey EC; Tsui BM
    Phys Med Biol; 1997 Dec; 42(12):2493-516. PubMed ID: 9434303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Experimental study on the location of energy windows for scatter correction by the TEW method in 201Tl imaging].
    Kojima A; Matsumoto M; Ohyama Y; Tomiguchi S; Kira M; Takahashi M
    Kaku Igaku; 1997 Sep; 34(9):831-6. PubMed ID: 9394551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single photon scatter compensation by photopeak energy distribution analysis.
    Logan KW; McFarland WD
    IEEE Trans Med Imaging; 1992; 11(2):161-4. PubMed ID: 18218369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of scatter correction on quantification of myocardial SPECT and application to dual-energy acquisition using triple-energy window method].
    Nakajima K; Matsudaira M; Yamada M; Taki J; Tonami N; Hisada K
    Kaku Igaku; 1995 Sep; 32(9):959-67. PubMed ID: 8523844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections.
    de Nijs R; Lagerburg V; Klausen TL; Holm S
    Nucl Med Commun; 2014 May; 35(5):522-33. PubMed ID: 24525900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Energy spectral analysis in a photopeak region of 201Hg X-rays for 201Tl imaging].
    Kojima A; Matsumoto M; Oyama Y; Tomiguchi S; Kira M; Takahashi M
    Kaku Igaku; 1997 Feb; 34(2):95-103. PubMed ID: 9095572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Signal to noise ratio based filter optimization in triple energy window scatter correction.
    Blokland KJ; Winn RD; Pauwels EK
    Med Phys; 2000 Aug; 27(8):1955-60. PubMed ID: 10984241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of scatter substraction on detection and quantitation in hepatic SPECT.
    de Vries DJ; King MA; Soares EJ; Tsui BM; Metz CE
    J Nucl Med; 1999 Jun; 40(6):1011-23. PubMed ID: 10452320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of scatter compensation methods by their effects on parameter estimation from SPECT projections.
    Moore SC; Kijewski MF; Müller SP; Rybicki F; Zimmerman RE
    Med Phys; 2001 Feb; 28(2):278-87. PubMed ID: 11243353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.