These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 15523513)

  • 1. Possible contributions of CPG activity to the control of rhythmic human arm movement.
    Zehr EP; Carroll TJ; Chua R; Collins DF; Frigon A; Haridas C; Hundza SR; Thompson AK
    Can J Physiol Pharmacol; 2004; 82(8-9):556-68. PubMed ID: 15523513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmic arm cycling modulates Hoffmann reflex excitability differentially in the ankle flexor and extensor muscles.
    Dragert K; Zehr EP
    Neurosci Lett; 2009 Feb; 450(3):235-8. PubMed ID: 19028550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus H-reflexes and somatosensory conditioning.
    Frigon A; Collins DF; Zehr EP
    J Neurophysiol; 2004 Apr; 91(4):1516-23. PubMed ID: 14657191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward and backward arm cycling are regulated by equivalent neural mechanisms.
    Zehr EP; Hundza SR
    J Neurophysiol; 2005 Jan; 93(1):633-40. PubMed ID: 15317838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-dependent modulation of soleus H-reflex amplitude induced by rhythmic arm cycling.
    de Ruiter GC; Hundza SR; Zehr EP
    Neurosci Lett; 2010 May; 475(1):7-11. PubMed ID: 20298752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticospinal excitability is lower during rhythmic arm movement than during tonic contraction.
    Carroll TJ; Baldwin ER; Collins DF; Zehr EP
    J Neurophysiol; 2006 Feb; 95(2):914-21. PubMed ID: 16251263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural control of rhythmic, cyclical human arm movement: task dependency, nerve specificity and phase modulation of cutaneous reflexes.
    Zehr EP; Kido A
    J Physiol; 2001 Dec; 537(Pt 3):1033-45. PubMed ID: 11744775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term plasticity of spinal reflex excitability induced by rhythmic arm movement.
    Javan B; Zehr EP
    J Neurophysiol; 2008 Apr; 99(4):2000-5. PubMed ID: 18234977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulations of interlimb and intralimb cutaneous reflexes during simultaneous arm and leg cycling in humans.
    Sakamoto M; Endoh T; Nakajima T; Tazoe T; Shiozawa S; Komiyama T
    Clin Neurophysiol; 2006 Jun; 117(6):1301-11. PubMed ID: 16651023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of arm and leg movement during human locomotion.
    Zehr EP; Duysens J
    Neuroscientist; 2004 Aug; 10(4):347-61. PubMed ID: 15271262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of cutaneous reflexes in arm muscles during walking: further evidence of similar control mechanisms for rhythmic human arm and leg movements.
    Zehr EP; Haridas C
    Exp Brain Res; 2003 Mar; 149(2):260-6. PubMed ID: 12610695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facilitation of soleus H-reflex amplitude evoked by cutaneous nerve stimulation at the wrist is not suppressed by rhythmic arm movement.
    Zehr EP; Frigon A; Hoogenboom N; Collins DF
    Exp Brain Res; 2004 Dec; 159(3):382-8. PubMed ID: 15480593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability.
    Zehr EP; Klimstra M; Johnson EA; Carroll TJ
    Neurosci Lett; 2007 May; 419(1):10-4. PubMed ID: 17452078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of human cutaneous reflexes during rhythmic cyclical arm movement.
    Zehr EP; Chua R
    Exp Brain Res; 2000 Nov; 135(2):241-50. PubMed ID: 11131509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.
    Sasada S; Tazoe T; Nakajima T; Futatsubashi G; Ohtsuka H; Suzuki S; Zehr EP; Komiyama T
    J Neurophysiol; 2016 Apr; 115(4):2065-75. PubMed ID: 26961103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of arm and leg locomotor coupling with augmented cutaneous feedback from the hand.
    Zehr EP; Klimstra M; Dragert K; Barzi Y; Bowden MG; Javan B; Phadke C
    J Neurophysiol; 2007 Sep; 98(3):1810-4. PubMed ID: 17615121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural regulation of rhythmic arm and leg movement is conserved across human locomotor tasks.
    Zehr EP; Balter JE; Ferris DP; Hundza SR; Loadman PM; Stoloff RH
    J Physiol; 2007 Jul; 582(Pt 1):209-27. PubMed ID: 17463036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical outcomes and neural correlates of cutaneous reflexes evoked during rhythmic arm cycling.
    Klimstra MD; Thomas E; Zehr EP
    J Biomech; 2011 Mar; 44(5):802-9. PubMed ID: 21288521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interlimb coupling from the arms to legs is differentially specified for populations of motor units comprising the compound H-reflex during "reduced" human locomotion.
    Mezzarane RA; Klimstra M; Lewis A; Hundza SR; Zehr EP
    Exp Brain Res; 2011 Jan; 208(2):157-68. PubMed ID: 21063693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.