These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 1552352)
1. Calculation of radiation dose at a bone-to-marrow interface using Monte Carlo modeling techniques (EGS4). Johnson JC; Langhorst SM; Loyalka SK; Volkert WA; Ketring AR J Nucl Med; 1992 Apr; 33(4):623-8. PubMed ID: 1552352 [TBL] [Abstract][Full Text] [Related]
2. A three-dimensional transport model for determining absorbed fractions of energy for electrons within trabecular bone. Bouchet LG; Jokisch DW; Bolch WE J Nucl Med; 1999 Nov; 40(11):1947-66. PubMed ID: 10565793 [TBL] [Abstract][Full Text] [Related]
3. A Monte Carlo simulation model for radiation dose to metastatic skeletal tumor from rhenium-186(Sn)-HEDP. Samaratunga RC; Thomas SR; Hinnefeld JD; Von Kuster LC; Hyams DM; Moulton JS; Sperling MI; Maxon HR J Nucl Med; 1995 Feb; 36(2):336-50. PubMed ID: 7830140 [TBL] [Abstract][Full Text] [Related]
4. Marrow toxicity of 33P-versus 32P-orthophosphate: implications for therapy of bone pain and bone metastases. Goddu SM; Bishayee A; Bouchet LG; Bolch WE; Rao DV; Howell RW J Nucl Med; 2000 May; 41(5):941-51. PubMed ID: 10809212 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo simulation of trabecular bone remodelling and absorbed dose coefficients for tritium and 14C. Richardson RB; Nie HL; Chettle DR Radiat Prot Dosimetry; 2007; 127(1-4):158-62. PubMed ID: 17652111 [TBL] [Abstract][Full Text] [Related]
6. A three-dimensional transport model for determining absorbed fractions of energy for electrons within cortical bone. Bouchet LG; Bolch WE J Nucl Med; 1999 Dec; 40(12):2115-24. PubMed ID: 10616894 [TBL] [Abstract][Full Text] [Related]
7. Calculation of the radiation dose at a bone-to-marrow interface. van Dieren EB; Plaizier MA; Roos JC; Teule GJ; van Lingen A J Nucl Med; 1992 Oct; 33(10):1915-6. PubMed ID: 1403167 [No Abstract] [Full Text] [Related]
8. Effect of tissue inhomogeneity on dose distribution of continuous activity of low-energy electrons in bone marrow cavities with different topologies. Kwok CS; Bialobzyski PJ; Yu SK Med Phys; 1991; 18(3):533-41. PubMed ID: 1870497 [TBL] [Abstract][Full Text] [Related]
9. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE. Gersh JA; Dingfelder M; Toburen LH Health Phys; 2007 Jul; 93(1):47-59. PubMed ID: 17563492 [TBL] [Abstract][Full Text] [Related]
10. Dosimetric penumbra effects in catheter-based intravascular brachytherapy using a centered photon or beta line source. Yue N; Nath R; Roberts K Cardiovasc Radiat Med; 2000; 2(1):32-8. PubMed ID: 11229060 [TBL] [Abstract][Full Text] [Related]
11. [166Dy]Dy/166Ho hydroxide macroaggregates: an in vivo generator system for radiation synovectomy. Ferro-Flores G; Hernández-Oviedo O; Arteaga de Murphy C; Tendilla JI; Monroy-Guzmán F; Pedraza-López M; Aldama-Alvarado K Appl Radiat Isot; 2004 Dec; 61(6):1227-33. PubMed ID: 15388114 [TBL] [Abstract][Full Text] [Related]
12. S values for radionuclides localized within the skeleton. Bouchet LG; Bolch WE; Howell RW; Rao DV J Nucl Med; 2000 Jan; 41(1):189-212. PubMed ID: 10647623 [TBL] [Abstract][Full Text] [Related]
13. Considerations of marrow cellularity in 3-dimensional dosimetric models of the trabecular skeleton. Bolch WE; Patton PW; Rajon DA; Shah AP; Jokisch DW; Inglis BA J Nucl Med; 2002 Jan; 43(1):97-108. PubMed ID: 11801712 [TBL] [Abstract][Full Text] [Related]
14. CELLDOSE: a Monte Carlo code to assess electron dose distribution--S values for 131I in spheres of various sizes. Champion C; Zanotti-Fregonara P; Hindié E J Nucl Med; 2008 Jan; 49(1):151-7. PubMed ID: 18077517 [TBL] [Abstract][Full Text] [Related]
15. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes. Stabin MG; Konijnenberg MW J Nucl Med; 2000 Jan; 41(1):149-60. PubMed ID: 10647618 [TBL] [Abstract][Full Text] [Related]
16. A comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm. Ding GX; Cygler JE; Yu CW; Kalach NI; Daskalov G Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):622-33. PubMed ID: 16168854 [TBL] [Abstract][Full Text] [Related]
17. Verification of the VARSKIN beta skin dose calculation computer code. Sherbini S; DeCicco J; Gray AT; Struckmeyer R Health Phys; 2008 Jun; 94(6):527-38. PubMed ID: 18469586 [TBL] [Abstract][Full Text] [Related]
18. Comparison of measured and calculated spatial dose distributions for a bench-mark 106Ru/106Rh hot particle source. Aydarous ASh; Charles MW; Darley PJ Radiat Prot Dosimetry; 2008; 130(2):133-40. PubMed ID: 18083995 [TBL] [Abstract][Full Text] [Related]
19. Bone marrow absorbed dose of rhenium-186-HEDP and the relationship with decreased platelet counts. de Klerk JM; van Dieren EB; van het Schip AD; Hoekstra A; Zonnenberg BA; van Dijk A; Rutgers DH; Blijham GH; van Rijk PP J Nucl Med; 1996 Jan; 37(1):38-41. PubMed ID: 8543998 [TBL] [Abstract][Full Text] [Related]
20. Radiation dose to trabecular bone marrow stem cells from (3)H, (14)C and selected alpha-emitters incorporated in a bone remodeling compartment. Nie H; Richardson RB Phys Med Biol; 2009 Feb; 54(4):963-79. PubMed ID: 19147899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]