These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 15524162)

  • 21. Effects of two Gbetagamma-binding proteins--N-terminally truncated phosducin and beta-adrenergic receptor kinase C terminus (betaARKct)--in heart failure.
    Li Z; Laugwitz KL; Pinkernell K; Pragst I; Baumgartner C; Hoffmann E; Rosport K; Münch G; Moretti A; Humrich J; Lohse MJ; Ungerer M
    Gene Ther; 2003 Aug; 10(16):1354-61. PubMed ID: 12883532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiac beta-adrenergic signaling: from subcellular microdomains to heart failure.
    Saucerman JJ; McCulloch AD
    Ann N Y Acad Sci; 2006 Oct; 1080():348-61. PubMed ID: 17132794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transgenic studies of cardiac adrenergic receptor regulation.
    Eckhart AD; Koch WJ
    J Pharmacol Exp Ther; 2001 Oct; 299(1):1-5. PubMed ID: 11561056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The control of cardiomyocyte apoptosis via the beta-adrenergic signaling pathways.
    Communal C; Colucci WS
    Arch Mal Coeur Vaiss; 2005 Mar; 98(3):236-41. PubMed ID: 15816327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting myocardial beta-adrenergic receptor signaling and calcium cycling for heart failure gene therapy.
    Pleger ST; Boucher M; Most P; Koch WJ
    J Card Fail; 2007 Jun; 13(5):401-14. PubMed ID: 17602988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potentiation of beta-adrenergic signaling by gene transfer.
    Drazner MH; Koch WJ; Lefkowitz RJ
    Proc Assoc Am Physicians; 1997 May; 109(3):220-7. PubMed ID: 9154638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The beta-adrenergic receptor kinase in heart failure.
    Petrofski JA; Koch WJ
    J Mol Cell Cardiol; 2003 Oct; 35(10):1167-74. PubMed ID: 14519424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in beta-adrenoceptors in heart failure due to myocardial infarction are attenuated by blockade of renin-angiotensin system.
    Sethi R; Shao Q; Ren B; Saini HK; Takeda N; Dhalla NS
    Mol Cell Biochem; 2004 Aug; 263(1-2):11-20. PubMed ID: 15524163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of protein kinase C alpha improves myocardial beta-adrenergic receptor signaling and ventricular function in a model of myocardial preservation.
    D'Souza KM; Petrashevskaya NN; Merrill WH; Akhter SA
    J Thorac Cardiovasc Surg; 2008 Jan; 135(1):172-9, 179.e1. PubMed ID: 18179937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic AMP-mediated signal transduction in heart failure: molecular pathophysiology and therapeutic implications.
    Movsesian MA
    J Investig Med; 1997 Oct; 45(8):432-40. PubMed ID: 9394095
    [No Abstract]   [Full Text] [Related]  

  • 31. Direct intra-cardiomuscular transfer of beta2-adrenergic receptor gene augments cardiac output in cardiomyopathic hamsters.
    Tomiyasu K; Oda Y; Nomura M; Satoh E; Fushiki S; Imanishi J; Kondo M; Mazda O
    Gene Ther; 2000 Dec; 7(24):2087-93. PubMed ID: 11223989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Hopes for gene therapy for cardiac failure].
    Prunier F; Hajjar RJ
    Arch Mal Coeur Vaiss; 2006 Jan; 99(1):41-7. PubMed ID: 16479888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myocardial G protein-coupled receptor kinases: implications for heart failure therapy.
    Iaccarino G; Lefkowitz RJ; Koch WJ
    Proc Assoc Am Physicians; 1999; 111(5):399-405. PubMed ID: 10519160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular restoration of beta-adrenergic receptor signaling improves contractile function of failing hearts.
    Tevaearai HT; Koch WJ
    Trends Cardiovasc Med; 2004 Aug; 14(6):252-6. PubMed ID: 15451518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer.
    Akhter SA; Skaer CA; Kypson AP; McDonald PH; Peppel KC; Glower DD; Lefkowitz RJ; Koch WJ
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):12100-5. PubMed ID: 9342369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beta-adrenergic pathways in human heart failure.
    Sucharov CC
    Expert Rev Cardiovasc Ther; 2007 Jan; 5(1):119-24. PubMed ID: 17187463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What are the consequences of phosphorylation and hyperphosphorylation of ryanodine receptors in normal and failing heart?
    Bridge JH; Savio-Galimberti E
    Circ Res; 2008 May; 102(9):995-7. PubMed ID: 18467636
    [No Abstract]   [Full Text] [Related]  

  • 38. Myocardial beta-adrenergic receptor signaling in vivo: insights from transgenic mice.
    Rockman HA; Koch WJ; Milano CA; Lefkowitz RJ
    J Mol Med (Berl); 1996 Sep; 74(9):489-95. PubMed ID: 8892053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The adrenergic pathway and heart failure.
    Keys JR; Koch WJ
    Recent Prog Horm Res; 2004; 59():13-30. PubMed ID: 14749495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted inhibition of phosphoinositide 3-kinase activity as a novel strategy to normalize beta-adrenergic receptor function in heart failure.
    Perrino C; Rockman HA; Chiariello M
    Vascul Pharmacol; 2006 Aug; 45(2):77-85. PubMed ID: 16807128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.