These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15524383)

  • 1. Method for sensitivity analysis of photonic crystal devices.
    Veronis G; Dutton RW; Fan S
    Opt Lett; 2004 Oct; 29(19):2288-90. PubMed ID: 15524383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate sensitivity analysis of photonic devices exploiting the finite-difference time-domain cavity adjoint variable method.
    Swillam MA; Bakr MH; Li X
    Appl Opt; 2007 Mar; 46(9):1492-9. PubMed ID: 17334441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic crystal device sensitivity analysis with Wannier basis gradients.
    Jiao Y; Fan S; Miller DA
    Opt Lett; 2005 Feb; 30(3):302-4. PubMed ID: 15751892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adjoint-based optimization of active nanophotonic devices.
    Wang J; Shi Y; Hughes T; Zhao Z; Fan S
    Opt Express; 2018 Feb; 26(3):3236-3248. PubMed ID: 29401854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating adjoint variable method based photonic optimization with Schur complement domain decomposition.
    Zhao NZ; Boutami S; Fan S
    Opt Express; 2019 Jul; 27(15):20711-20719. PubMed ID: 31510160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjoint sensitivity analysis of plasmonic structures using the FDTD method.
    Zhang Y; Ahmed OS; Bakr MH
    Opt Lett; 2014 May; 39(10):3002-5. PubMed ID: 24978258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and optimization of photonic crystal devices based on transformation optics method.
    Cao Y; Xie J; Liu Y; Liu Z
    Opt Express; 2014 Feb; 22(3):2725-34. PubMed ID: 24663564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures.
    Mingaleev SF; Miroshnichenko AE; Kivshar YS; Busch K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046603. PubMed ID: 17155188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of complex modes in photonic crystal waveguides using the phase variation in characteristic coefficients.
    Hosseinnia AH; Khavasi A; Sarrafi P; Mehrany K
    Opt Lett; 2012 Aug; 37(15):3078-80. PubMed ID: 22859091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel microgenetic algorithm design for photonic crystal and waveguide structures.
    Jiang J; Cai J; Nordin GP; Li L
    Opt Lett; 2003 Dec; 28(23):2381-3. PubMed ID: 14680189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient smoothed finite element time domain analysis for photonic devices.
    Atia KS; Heikal AM; Obayya SS
    Opt Express; 2015 Aug; 23(17):22199-213. PubMed ID: 26368193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse Design Tool for Ion Optical Devices using the Adjoint Variable Method.
    Neustock LT; Hansen PC; Russell ZE; Hesselink L
    Sci Rep; 2019 Jul; 9(1):11031. PubMed ID: 31363126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities.
    Burgess IB; Zhang Y; McCutcheon MW; Rodriguez AW; Bravo-Abad J; Johnson SG; Loncar M
    Opt Express; 2009 Oct; 17(22):20099-108. PubMed ID: 19997233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjoint variable method for two-dimensional plasmonic structures.
    Ahmed OS; Bakr MH; Li X; Nomura T
    Opt Lett; 2012 Aug; 37(16):3453-5. PubMed ID: 23381288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser.
    Yokoyama M; Noda S
    Opt Express; 2005 Apr; 13(8):2869-80. PubMed ID: 19495182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps.
    Hu Z; Lu YY
    Opt Express; 2008 Oct; 16(22):17383-99. PubMed ID: 18958021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator.
    Jiao Y; Fan S; Miller DA
    Opt Lett; 2005 Jan; 30(2):141-3. PubMed ID: 15675693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated silicon photonic device design by attractor selection mechanism based on artificial neural networks: optical coupler and asymmetric light transmitter.
    Bor E; Alparslan O; Turduev M; Hanay YS; Kurt H; Arakawa S; Murata M
    Opt Express; 2018 Oct; 26(22):29032-29044. PubMed ID: 30470071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal and optical simulation of a photonic crystal light modulator based on the thermo-optic shift of the cut-off frequency.
    Tinker M; Lee JB
    Opt Express; 2005 Sep; 13(18):7174-88. PubMed ID: 19498740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circuit-based method for synthesizing of coupled-resonators bandpass photonic crystal filters.
    Dai Z; Wang J; Heng Y
    Opt Express; 2011 Feb; 19(4):3667-76. PubMed ID: 21369192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.