These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15524385)

  • 21. Surpassing the tuning speed limit of slow-light-based tunable optical delay via four-wave mixing Bragg scattering.
    Zhang N; Fu X; Liu J; Shu C
    Opt Lett; 2018 Sep; 43(17):4212-4215. PubMed ID: 30160754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mirrorless Optical Parametric Oscillation with Tunable Threshold in Cold Atoms.
    Mei Y; Guo X; Zhao L; Du S
    Phys Rev Lett; 2017 Oct; 119(15):150406. PubMed ID: 29077434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-efficiency four-wave mixing beyond pure electromagnetically induced transparency treatment.
    Li HC; Ge GQ; Suhail Zubairy M
    Opt Lett; 2019 Jul; 44(14):3486-3489. PubMed ID: 31305554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor.
    Boyer V; McCormick CF; Arimondo E; Lett PD
    Phys Rev Lett; 2007 Oct; 99(14):143601. PubMed ID: 17930669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double- system.
    Deng L; Payne MG; Huang G; Hagley EW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):055601. PubMed ID: 16383679
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First Evidence of Purely Extreme-Ultraviolet Four-Wave Mixing.
    Foglia L; Capotondi F; Mincigrucci R; Naumenko D; Pedersoli E; Simoncig A; Kurdi G; Calvi A; Manfredda M; Raimondi L; Mahne N; Zangrando M; Masciovecchio C; Bencivenga F
    Phys Rev Lett; 2018 Jun; 120(26):263901. PubMed ID: 30004768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Four-wave mixing in quantum dot semiconductor optical amplifiers.
    Flayyih AH; Al-Khursan AH
    Appl Opt; 2013 May; 52(14):3156-65. PubMed ID: 23669827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-precision three dimensional atom localization via multiphoton quantum destructive interference.
    Tian Y; Wang X; Yang WX; Shui T; Li L; Li X; Wu Z
    Opt Express; 2020 Aug; 28(17):25308-25318. PubMed ID: 32907054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Achieving multifrequency mode entanglement with ultraslow multiwave mixing.
    Wu Y; Deng L
    Opt Lett; 2004 May; 29(10):1144-6. PubMed ID: 15182013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmon-enhanced four-wave mixing by nanoholes in thin gold films.
    Hagman H; Bäcke O; Kiskis J; Svedberg F; Jonsson MP; Höök F; Enejder A
    Opt Lett; 2014 Feb; 39(4):1001-4. PubMed ID: 24562262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of nonlinear interference on a silicon photonic chip.
    Ono T; Sinclair GF; Bonneau D; Thompson MG; Matthews JCF; Rarity JG
    Opt Lett; 2019 Mar; 44(5):1277-1280. PubMed ID: 30821767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High conversion efficiency in resonant four-wave mixing processes.
    Lee CY; Wu BH; Wang G; Chen YF; Chen YC; Yu IA
    Opt Express; 2016 Jan; 24(2):1008-16. PubMed ID: 26832483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear propagation of ultraslow pulses in media with electromagnetically induced transparency.
    Cheng J; Han S; Yan Y
    Opt Lett; 2005 Oct; 30(19):2638-40. PubMed ID: 16208925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable optical multicasting of PDM-OFDM signals by novel polarization-interleaved multi-pump FWM scheme.
    Zhu P; Li J; Chen Y; Zhou P; Chen Z; He Y
    Opt Express; 2016 Nov; 24(23):26344-26356. PubMed ID: 27857370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vanishing and Revival of Resonance Raman Scattering.
    Guo Y; Shu CC; Dong D; Nori F
    Phys Rev Lett; 2019 Nov; 123(22):223202. PubMed ID: 31868398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competing four-wave mixing processes in dispersion oscillating telecom fiber.
    Finot C; Fatome J; Sysoliatin A; Kosolapov A; Wabnitz S
    Opt Lett; 2013 Dec; 38(24):5361-4. PubMed ID: 24322258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient terahertz-wave generation via four-wave mixing in silicon membrane waveguides.
    Wang Z; Liu H; Huang N; Sun Q; Wen J
    Opt Express; 2012 Apr; 20(8):8920-8. PubMed ID: 22513603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of entanglement using cascaded four-wave mixing processes.
    Xin J; Qi J; Jing J
    Opt Lett; 2017 Jan; 42(2):366-369. PubMed ID: 28081114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing.
    Nielsen MP; Shi X; Dichtl P; Maier SA; Oulton RF
    Science; 2017 Dec; 358(6367):1179-1181. PubMed ID: 29191907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable ultraslow optical solitons in a degenerated two-level atomic medium under EIT assisted by a magnetic field.
    Hoang Minh D; Luong Thi Yen N; Dinh Xuan K; Nguyen Huy B
    Sci Rep; 2020 Sep; 10(1):15298. PubMed ID: 32943720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.