These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 15524500)

  • 1. Intermittency of height fluctuations in stationary state of the Kardar-Parisi-Zhang equation with infinitesimal surface tension in 1+1 dimensions.
    Tabei SM; Bahraminasab A; Masoudi AA; Mousavi SS; Reza Rahimi Tabar M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031101. PubMed ID: 15524500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical theory for the Kardar-Parisi-Zhang equation in (1+1) dimensions.
    Masoudi AA; Shahbazi F; Davoudi J; Tabar MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026132. PubMed ID: 11863612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kardar-Parisi-Zhang equation with short-range correlated noise: Emergent symmetries and nonuniversal observables.
    Mathey S; Agoritsas E; Kloss T; Lecomte V; Canet L
    Phys Rev E; 2017 Mar; 95(3-1):032117. PubMed ID: 28415329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-KPZ fluctuations in the derivative of the Kardar-Parisi-Zhang equation or noisy Burgers equation.
    Rodríguez-Fernández E; Cuerno R
    Phys Rev E; 2020 May; 101(5-1):052126. PubMed ID: 32575191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.
    Halpin-Healy T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042118. PubMed ID: 24229127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact Short-Time Height Distribution in the One-Dimensional Kardar-Parisi-Zhang Equation and Edge Fermions at High Temperature.
    Le Doussal P; Majumdar SN; Rosso A; Schehr G
    Phys Rev Lett; 2016 Aug; 117(7):070403. PubMed ID: 27563940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sinc noise for the Kardar-Parisi-Zhang equation.
    Niggemann O; Hinrichsen H
    Phys Rev E; 2018 Jun; 97(6-1):062125. PubMed ID: 30011492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal aspects of curved, flat, and stationary-state Kardar-Parisi-Zhang statistics.
    Halpin-Healy T; Lin Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010103. PubMed ID: 24580153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Evidence for Universal Statistics of Stationary Kardar-Parisi-Zhang Interfaces.
    Iwatsuka T; Fukai YT; Takeuchi KA
    Phys Rev Lett; 2020 Jun; 124(25):250602. PubMed ID: 32639767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical phase transition in large-deviation statistics of the Kardar-Parisi-Zhang equation.
    Janas M; Kamenev A; Meerson B
    Phys Rev E; 2016 Sep; 94(3-1):032133. PubMed ID: 27739741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation.
    Nicoli M; Vivo E; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):045202. PubMed ID: 21230337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality.
    Sasamoto T; Spohn H
    Phys Rev Lett; 2010 Jun; 104(23):230602. PubMed ID: 20867222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Half-Space Stationary Kardar-Parisi-Zhang Equation.
    Barraquand G; Krajenbrink A; Le Doussal P
    J Stat Phys; 2020; 181(4):1149-1203. PubMed ID: 33087988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension.
    Alves SG; Oliveira TJ; Ferreira SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):020103. PubMed ID: 25215669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-time growth of a Kardar-Parisi-Zhang interface with flat initial conditions.
    Gueudré T; Le Doussal P; Rosso A; Henry A; Calabrese P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041151. PubMed ID: 23214573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimum action method for the Kardar-Parisi-Zhang equation.
    Fogedby HC; Ren W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041116. PubMed ID: 19905282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of the Kardar-Parisi-Zhang equation.
    Miranda VG; Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031134. PubMed ID: 18517356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class.
    Gomes WP; Penna ALA; Oliveira FA
    Phys Rev E; 2019 Aug; 100(2-1):020101. PubMed ID: 31574642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-dimensional Kardar-Parisi-Zhang and Kuramoto-Sivashinsky universality class: Limit distributions.
    Roy D; Pandit R
    Phys Rev E; 2020 Mar; 101(3-1):030103. PubMed ID: 32289936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kardar-Parisi-Zhang equation with temporally correlated noise: a self-consistent approach.
    Katzav E; Schwartz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011601. PubMed ID: 15324059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.