These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 15524557)

  • 1. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation.
    Sosnovtseva OV; Pavlov AN; Mosekilde E; Holstein-Rathlou NH; Marsh DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031915. PubMed ID: 15524557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics.
    Sosnovtseva OV; Pavlov AN; Mosekilde E; Holstein-Rathlou NH; Marsh DJ
    Physiol Meas; 2005 Aug; 26(4):351-62. PubMed ID: 15886431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-varying properties of renal autoregulatory mechanisms.
    Zou R; Cupples WA; Yip KP; Holstein-Rathlou NH; Chon KH
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1112-20. PubMed ID: 12374335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats.
    Sosnovtseva OV; Pavlov AN; Mosekilde E; Yip KP; Holstein-Rathlou NH; Marsh DJ
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1545-55. PubMed ID: 17728377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of L-NAME on intra- and inter-nephron synchronization.
    Sosnovtseva OV; Pavlov AN; Pavlova ON; Mosekilde E; Holstein-Rathlou NH
    Eur J Pharm Sci; 2009 Jan; 36(1):39-50. PubMed ID: 19028576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing multimode interaction in renal autoregulation.
    Pavlov AN; Sosnovtseva OV; Pavlova ON; Mosekilde E; Holstein-Rathlou NH
    Physiol Meas; 2008 Aug; 29(8):945-58. PubMed ID: 18603665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Very low frequency modulation in renal autoregulation.
    Siu KL; Sung B; Moore LC; Birzgalis A; Chon KH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():771-4. PubMed ID: 17946856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of low-frequency oscillations in renal blood flow.
    Siu KL; Sung B; Cupples WA; Moore LC; Chon KH
    Am J Physiol Renal Physiol; 2009 Jul; 297(1):F155-62. PubMed ID: 19420111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency encoding in renal blood flow regulation.
    Marsh DJ; Sosnovtseva OV; Pavlov AN; Yip KP; Holstein-Rathlou NH
    Am J Physiol Regul Integr Comp Physiol; 2005 May; 288(5):R1160-7. PubMed ID: 15661968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoregulation and tubuloglomerular feedback in normotensive and hypertensive rats.
    Ploth DW; Schnermann J; Dahlheim H; Hermle M; Schmidmeier E
    Kidney Int; 1977 Oct; 12(4):253-67. PubMed ID: 599837
    [No Abstract]   [Full Text] [Related]  

  • 11. Renal autoregulation and passive pressure-flow relationships in diabetes and hypertension.
    Hill JV; Findon G; Appelhoff RJ; Endre ZH
    Am J Physiol Renal Physiol; 2010 Oct; 299(4):F837-44. PubMed ID: 20660017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic modeling of renal blood flow in Dahl hypertensive and normotensive rats.
    Knudsen T; Elmer H; Knudsen MH; Holstein-Rathlou NH; Stoustrup J
    IEEE Trans Biomed Eng; 2004 May; 51(5):689-97. PubMed ID: 15132494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multinephron model of renal blood flow autoregulation by tubuloglomerular feedback and myogenic response.
    Oien AH; Aukland K
    Acta Physiol Scand; 1991 Sep; 143(1):71-92. PubMed ID: 1957708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaos and non-linear phenomena in renal vascular control.
    Yip KP; Holstein-Rathlou NH
    Cardiovasc Res; 1996 Mar; 31(3):359-70. PubMed ID: 8681323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats.
    Chon KH; Chen YM; Holstein-Rathlou NH; Marmarelis VZ
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):342-53. PubMed ID: 9509750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree.
    Marsh DJ; Sosnovtseva OV; Mosekilde E; Holstein-Rathlou NH
    Chaos; 2007 Mar; 17(1):015114. PubMed ID: 17411271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multinephron dynamics on the renal vascular network.
    Marsh DJ; Wexler AS; Brazhe A; Postnov DE; Sosnovtseva OV; Holstein-Rathlou NH
    Am J Physiol Renal Physiol; 2013 Jan; 304(1):F88-F102. PubMed ID: 22975020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons.
    Layton AT; Moore LC; Layton HE
    Bull Math Biol; 2009 Apr; 71(3):515-55. PubMed ID: 19205808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of transient renal autoregulatory mechanisms using time-frequency spectral techniques.
    Wang H; Siu K; Ju K; Moore LC; Chon KH
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1033-9. PubMed ID: 15977733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust method for detection of linear and nonlinear interactions: application to renal blood flow dynamics.
    Feng L; Siu K; Moore LC; Marsh DJ; Chon KH
    Ann Biomed Eng; 2006 Feb; 34(2):339-53. PubMed ID: 16496083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.